A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen (original) (raw)

Abstract

Several bacterial protein toxins require activation by eukaryotic proteases. Previous studies have shown that anthrax toxin protective antigen (PA), Pseudomonas exotoxin A (PE), and diphtheria toxin (DT) are cleaved by furin C-terminal to the sequences RKKR, RQPR, and RVRR, respectively. Because furin-deficient cells retain some sensitivity to PA and DT, it is evident that other cellular proteases can activate these toxins. Whereas furin has been shown to require arginine residues at positions -1 and -4 for substrate recognition, another protease with an activity which could substitute for furin in toxin activation, the furin-related protease PACE4, requires basic residues in the -1, -2, and -4 positions of the substrate sequence. To examine the relative roles of furin and PACE4 in toxin activation, we used furin-deficient CHO cells (FD11 cells) transfected with either the furin (FD11/furin cells) or PACE4 (FD11/PACE4 cells) gene. Mutant PA proteins containing the cleavage sequence RAAR or KR were cytotoxic toward cells expressing only PACE4. In vitro cleavage data demonstrated that PACE4 can recognize RAAR and, to a much lesser extent, KR and RR. When extracts from PACE4-transfected cells were used as a source of proteases, PACE4 had minimal activity, indicating that it had been partially inactivated or did not remain associated with the cell membranes. Cleavage of iodinated PA containing the sequence RKKR or RAAR was detected on the surface of all cell types tested, but cleavage of a dibasic sequence was detected only intracellularly and only in cells that expressed furin or PACE4. The data provide evidence that PACE4 is present at the exterior of cells, that it plays a role in the proteolytic activation of anthrax toxin PA, and that PACE4 can activate substrates at the sequence RAAR or KR.

Full Text

The Full Text of this article is available as a PDF (709.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora N., Klimpel K. R., Singh Y., Leppla S. H. Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J Biol Chem. 1992 Aug 5;267(22):15542–15548. [PubMed] [Google Scholar]
  2. Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
  3. Bosshart H., Humphrey J., Deignan E., Davidson J., Drazba J., Yuan L., Oorschot V., Peters P. J., Bonifacino J. S. The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol. 1994 Sep;126(5):1157–1172. doi: 10.1083/jcb.126.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breslin M. B., Lindberg I., Benjannet S., Mathis J. P., Lazure C., Seidah N. G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem. 1993 Dec 25;268(36):27084–27093. [PubMed] [Google Scholar]
  5. Chiron M. F., Fryling C. M., FitzGerald D. J. Cleavage of pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem. 1994 Jul 8;269(27):18167–18176. [PubMed] [Google Scholar]
  6. Creemers J. W., Groot Kormelink P. J., Roebroek A. J., Nakayama K., Van de Ven W. J. Proprotein processing activity and cleavage site selectivity of the Kex2-like endoprotease PACE4. FEBS Lett. 1993 Dec 20;336(1):65–69. doi: 10.1016/0014-5793(93)81610-c. [DOI] [PubMed] [Google Scholar]
  7. Fryling C., Ogata M., FitzGerald D. Characterization of a cellular protease that cleaves Pseudomonas exotoxin. Infect Immun. 1992 Feb;60(2):497–502. doi: 10.1128/iai.60.2.497-502.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon V. M., Klimpel K. R., Arora N., Henderson M. A., Leppla S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun. 1995 Jan;63(1):82–87. doi: 10.1128/iai.63.1.82-87.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon V. M., Leppla S. H. Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun. 1994 Feb;62(2):333–340. doi: 10.1128/iai.62.2.333-340.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inocencio N. M., Moehring J. M., Moehring T. J. Furin activates Pseudomonas exotoxin A by specific cleavage in vivo and in vitro. J Biol Chem. 1994 Dec 16;269(50):31831–31835. [PubMed] [Google Scholar]
  11. Kiefer M. C., Tucker J. E., Joh R., Landsberg K. E., Saltman D., Barr P. J. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 1991 Dec;10(10):757–769. doi: 10.1089/dna.1991.10.757. [DOI] [PubMed] [Google Scholar]
  12. Klimpel K. R., Molloy S. S., Thomas G., Leppla S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. doi: 10.1073/pnas.89.21.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leppla S. H. Production and purification of anthrax toxin. Methods Enzymol. 1988;165:103–116. doi: 10.1016/s0076-6879(88)65019-1. [DOI] [PubMed] [Google Scholar]
  14. Moehring J. M., Inocencio N. M., Robertson B. J., Moehring T. J. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem. 1993 Feb 5;268(4):2590–2594. [PubMed] [Google Scholar]
  15. Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 1992 Jun 12;69(6):1051–1061. doi: 10.1016/0092-8674(92)90623-k. [DOI] [PubMed] [Google Scholar]
  17. Quinn C. P., Singh Y., Klimpel K. R., Leppla S. H. Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem. 1991 Oct 25;266(30):20124–20130. [PubMed] [Google Scholar]
  18. Rehemtulla A., Barr P. J., Rhodes C. J., Kaufman R. J. PACE4 is a member of the mammalian propeptidase family that has overlapping but not identical substrate specificity to PACE. Biochemistry. 1993 Nov 2;32(43):11586–11590. doi: 10.1021/bi00094a015. [DOI] [PubMed] [Google Scholar]
  19. Rehemtulla A., Kaufman R. J. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992 May 1;79(9):2349–2355. [PubMed] [Google Scholar]
  20. Schäfer W., Stroh A., Berghöfer S., Seiler J., Vey M., Kruse M. L., Kern H. F., Klenk H. D., Garten W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 1995 Jun 1;14(11):2424–2435. doi: 10.1002/j.1460-2075.1995.tb07240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seidah N. G., Day R., Marcinkiewicz M., Chrétien M. Mammalian paired basic amino acid convertases of prohormones and proproteins. Ann N Y Acad Sci. 1993 May 31;680:135–146. doi: 10.1111/j.1749-6632.1993.tb19680.x. [DOI] [PubMed] [Google Scholar]
  22. Singh Y., Chaudhary V. K., Leppla S. H. A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Chem. 1989 Nov 15;264(32):19103–19107. [PubMed] [Google Scholar]
  23. Tsuji A., Mori K., Hine C., Tamai Y., Nagamune H., Matsuda Y. The tissue distribution of mRNAs for the PACE4 isoforms, kexin-like processing protease: PACE4C and PACE4D mRNAs are major transcripts among PACE4 isoforms. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1215–1221. doi: 10.1006/bbrc.1994.2060. [DOI] [PubMed] [Google Scholar]
  24. Tsuneoka M., Nakayama K., Hatsuzawa K., Komada M., Kitamura N., Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993 Dec 15;268(35):26461–26465. [PubMed] [Google Scholar]
  25. Van de Ven W. J., Roebroek A. J., Van Duijnhoven H. L. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed] [Google Scholar]