A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis (original) (raw)

Abstract

To identify genes expressed at intermediate stages of Bacillus subtilis sporulation, we screened for sigma E-dependent promoters. One promoter that we found drives expression of an operon consisting of at least five open reading frames (ORFs). The predicted products of the first three ORFs are very homologous to enzymes involved in fatty acid metabolism, including acetyl coenzyme A (acetyl-CoA) acetyltransferase (thiolase), 3-hydroxybutyryl-CoA dehydrogenase, and acyl-CoA dehydrogenase, respectively. We showed that the fourth ORF encoded a third isozyme of citrate synthase in B. subtilis. Genetic evidence and primer extension results showed that transcription of this operon is directed by the mother cell compartment-specific sigma factor, sigma E, and so the operon was named mmg (for mother cell metabolic genes). Furthermore, we found that a sequence (mmgO) with homology to a catabolite-responsive element mediates glucose repression of mmg promoter activity during sporulation and that this repression was lost in a ccpA mutant.

Full Text

The Full Text of this article is available as a PDF (422.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter G. M., Casazza J. P., Zhi W., Nemeth P., Srere P. A., Evans C. T. Mutation of essential catalytic residues in pig citrate synthase. Biochemistry. 1990 Aug 21;29(33):7557–7563. doi: 10.1021/bi00485a003. [DOI] [PubMed] [Google Scholar]
  2. Barnes S. J., Weitzman P. D. Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 1986 Jun 9;201(2):267–270. doi: 10.1016/0014-5793(86)80621-4. [DOI] [PubMed] [Google Scholar]
  3. Beall B., Driks A., Losick R., Moran C. P., Jr Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J Bacteriol. 1993 Mar;175(6):1705–1716. doi: 10.1128/jb.175.6.1705-1716.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beall B., Moran C. P., Jr Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J Bacteriol. 1994 Apr;176(7):2003–2012. doi: 10.1128/jb.176.7.2003-2012.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bramucci M. G., Green B. D., Ambulos N., Youngman P. Identification of a Bacillus subtilis spo0H allele that is necessary for suppression of the sporulation-defective phenotype of a spo0A mutation. J Bacteriol. 1995 Mar;177(6):1630–1633. doi: 10.1128/jb.177.6.1630-1633.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coppolecchia R., DeGrazia H., Moran C. P., Jr Deletion of spoIIAB blocks endospore formation in Bacillus subtilis at an early stage. J Bacteriol. 1991 Nov;173(21):6678–6685. doi: 10.1128/jb.173.21.6678-6685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dedonder R. A., Lepesant J. A., Lepesant-Kejzlarová J., Billault A., Steinmetz M., Kunst F. Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol. 1977 Apr;33(4):989–993. doi: 10.1128/aem.33.4.989-993.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diederich B., Tatti K. M., Jones C. H., Beall B., Moran C. P., Jr Genetic suppression analysis of sigma E interaction with three promoters in sporulating Bacillus subtilis. Gene. 1992 Nov 2;121(1):63–69. doi: 10.1016/0378-1119(92)90162-i. [DOI] [PubMed] [Google Scholar]
  10. Flechtner V. R., Hanson R. S. Coarse and fine control of citrate synthase from Bacillus subtilis. Biochim Biophys Acta. 1969 Jul 30;184(2):252–262. doi: 10.1016/0304-4165(69)90027-0. [DOI] [PubMed] [Google Scholar]
  11. Fortnagel P., Freese E. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol. 1968 Apr;95(4):1431–1438. doi: 10.1128/jb.95.4.1431-1438.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hay R. E., Tatti K. M., Vold B. S., Green C. J., Moran C. P., Jr Promoter used by sigma-29 RNA polymerase from Bacillus subtilis. Gene. 1986;48(2-3):301–306. doi: 10.1016/0378-1119(86)90090-9. [DOI] [PubMed] [Google Scholar]
  13. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  14. Henner D. J. Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol. 1990;185:223–228. doi: 10.1016/0076-6879(90)85022-g. [DOI] [PubMed] [Google Scholar]
  15. Henriques A. O., Beall B. W., Roland K., Moran C. P., Jr Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol. 1995 Jun;177(12):3394–3406. doi: 10.1128/jb.177.12.3394-3406.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hueck C. J., Hillen W., Saier M. H., Jr Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol. 1994 Sep;145(7):503–518. doi: 10.1016/0923-2508(94)90028-0. [DOI] [PubMed] [Google Scholar]
  17. Ireton K., Jin S., Grossman A. D., Sonenshein A. L. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2845–2849. doi: 10.1073/pnas.92.7.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jin S., Sonenshein A. L. Identification of two distinct Bacillus subtilis citrate synthase genes. J Bacteriol. 1994 Aug;176(15):4669–4679. doi: 10.1128/jb.176.15.4669-4679.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jin S., Sonenshein A. L. Transcriptional regulation of Bacillus subtilis citrate synthase genes. J Bacteriol. 1994 Aug;176(15):4680–4690. doi: 10.1128/jb.176.15.4680-4690.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kenney T. J., Moran C. P., Jr Genetic evidence for interaction of sigma A with two promoters in Bacillus subtilis. J Bacteriol. 1991 Jun;173(11):3282–3290. doi: 10.1128/jb.173.11.3282-3290.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kiel J. A., Boels J. M., Beldman G., Venema G. Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol. 1994 Jan;11(1):203–218. doi: 10.1111/j.1365-2958.1994.tb00301.x. [DOI] [PubMed] [Google Scholar]
  22. Kunkel B., Kroos L., Poth H., Youngman P., Losick R. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes Dev. 1989 Nov;3(11):1735–1744. doi: 10.1101/gad.3.11.1735. [DOI] [PubMed] [Google Scholar]
  23. LeBlanc D. J., Lee L. N., Inamine J. M. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother. 1991 Sep;35(9):1804–1810. doi: 10.1128/aac.35.9.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Man W. J., Li Y., O'Connor C. D., Wilton D. C. The effect of replacing the conserved active-site residues His-264, Asp-312 and Arg-314 on the binding and catalytic properties of Escherichia coli citrate synthase. Biochem J. 1994 Jun 15;300(Pt 3):765–770. doi: 10.1042/bj3000765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pereira D. S., Donald L. J., Hosfield D. J., Duckworth H. W. Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J Biol Chem. 1994 Jan 7;269(1):412–417. [PubMed] [Google Scholar]
  26. Piggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol Rev. 1976 Dec;40(4):908–962. doi: 10.1128/br.40.4.908-962.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Piggot P. J. Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporeulation operons. J Bacteriol. 1973 Jun;114(3):1241–1253. doi: 10.1128/jb.114.3.1241-1253.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rather P. N., Coppolecchia R., DeGrazia H., Moran C. P., Jr Negative regulator of sigma G-controlled gene expression in stationary-phase Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):709–715. doi: 10.1128/jb.172.2.709-715.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rather P. N., Moran C. P., Jr Compartment-specific transcription in Bacillus subtilis: identification of the promoter for gdh. J Bacteriol. 1988 Nov;170(11):5086–5092. doi: 10.1128/jb.170.11.5086-5092.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schendel F. J., August P. R., Anderson C. R., Hanson R. S., Flickinger M. C. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp. Appl Environ Microbiol. 1992 Jan;58(1):335–345. doi: 10.1128/aem.58.1.335-345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siranosian K. J., Ireton K., Grossman A. D. Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis. J Bacteriol. 1993 Nov;175(21):6789–6796. doi: 10.1128/jb.175.21.6789-6796.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sugae K., Freese E. Requirement for Acetate and Glycine (or Serine) for Sporulation Without Growth of Bacillus subtilis. J Bacteriol. 1970 Dec;104(3):1074–1085. doi: 10.1128/jb.104.3.1074-1085.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sumegi B., Gilbert H. F., Srere P. A. Interaction between citrate synthase and thiolase. J Biol Chem. 1985 Jan 10;260(1):188–190. [PubMed] [Google Scholar]
  36. Tatti K. M., Jones C. H., Moran C. P., Jr Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J Bacteriol. 1991 Dec;173(24):7828–7833. doi: 10.1128/jb.173.24.7828-7833.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trieu-Cuot P., Klier A., Courvalin P. DNA sequences specifying the transcription of the streptococcal kanamycin resistance gene in Escherichia coli and Bacillus subtilis. Mol Gen Genet. 1985;198(2):348–352. doi: 10.1007/BF00383017. [DOI] [PubMed] [Google Scholar]
  38. Weickert M. J., Chambliss G. H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. doi: 10.1073/pnas.87.16.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yansura D. G., Henner D. J. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A. 1984 Jan;81(2):439–443. doi: 10.1073/pnas.81.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]