Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes (original) (raw)

. 1997 Nov;151(5):1273–1280.

Abstract

Previous work has shown that adult mouse hepatocytes can divide at least 18 times in vivo. To test whether this represents the upper limit of their regenerative capacity, we performed serial transplantation of hepatocytes in the fumarylacetoacetate hydrolase deficiency murine model of liver repopulation. Hepatocytes from adult donors were serially transplanted in limiting numbers six times and resulted in complete repopulation during each cycle. This corresponds to a minimal number of 69 cell doublings or a 7.3 x 10(20)-fold expansion. No evidence for abnormal liver function or altered hepatic architecture was found in repopulated animals. We conclude that a fraction of adult mouse hepatocytes have growth potential similar to that of hematopoietic stem cells.

1273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S., Miller R. G., Phillips R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977 Jun 1;145(6):1567–1579. doi: 10.1084/jem.145.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coleman W. B., Wennerberg A. E., Smith G. J., Grisham J. W. Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am J Pathol. 1993 May;142(5):1373–1382. [PMC free article] [PubMed] [Google Scholar]
  3. Eckert J. W., Buerkle C. J., Major A. M., Finegold M. J., Brandt M. L. In situ hybridization utilizing a Y chromosome DNA probe. Use as a cell marker for hepatocellular transplantation. Transplantation. 1995 Jan 15;59(1):109–111. doi: 10.1097/00007890-199501150-00019. [DOI] [PubMed] [Google Scholar]
  4. Evarts R. P., Nagy P., Marsden E., Thorgeirsson S. S. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987 Nov;8(11):1737–1740. doi: 10.1093/carcin/8.11.1737. [DOI] [PubMed] [Google Scholar]
  5. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  6. Grompe M., Jones S. N., Loulseged H., Caskey C. T. Retroviral-mediated gene transfer of human ornithine transcarbamylase into primary hepatocytes of spf and spf-ash mice. Hum Gene Ther. 1992 Feb;3(1):35–44. doi: 10.1089/hum.1992.3.1-35. [DOI] [PubMed] [Google Scholar]
  7. Grompe M., Lindstedt S., al-Dhalimy M., Kennaway N. G., Papaconstantinou J., Torres-Ramos C. A., Ou C. N., Finegold M. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1995 Aug;10(4):453–460. doi: 10.1038/ng0895-453. [DOI] [PubMed] [Google Scholar]
  8. Grompe M., al-Dhalimy M., Finegold M., Ou C. N., Burlingame T., Kennaway N. G., Soriano P. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 1993 Dec;7(12A):2298–2307. doi: 10.1101/gad.7.12a.2298. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. E., Astle C. M. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J Exp Med. 1982 Dec 1;156(6):1767–1779. doi: 10.1084/jem.156.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horwich A. L. Inherited hepatic enzyme defects as candidates for liver-directed gene therapy. Curr Top Microbiol Immunol. 1991;168:185–200. doi: 10.1007/978-3-642-76015-0_9. [DOI] [PubMed] [Google Scholar]
  11. Hosokawa M., Ashida Y., Nishikawa T., Takeda T. Accelerated aging of dermal fibroblast-like cells from senescence-accelerated mouse (SAM). 1. Acceleration of population aging in vitro. Mech Ageing Dev. 1994 May;74(1-2):65–77. doi: 10.1016/0047-6374(94)90099-x. [DOI] [PubMed] [Google Scholar]
  12. Kelsey G., Ruppert S., Beermann F., Grund C., Tanguay R. M., Schütz G. Rescue of mice homozygous for lethal albino deletions: implications for an animal model for the human liver disease tyrosinemia type 1. Genes Dev. 1993 Dec;7(12A):2285–2297. doi: 10.1101/gad.7.12a.2285. [DOI] [PubMed] [Google Scholar]
  13. Kvittingen E. A., Rootwelt H., Berger R., Brandtzaeg P. Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest. 1994 Oct;94(4):1657–1661. doi: 10.1172/JCI117509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Labelle Y., Puymirat J., Tanguay R. M. Localization of cells in the rat brain expressing fumarylacetoacetate hydrolase, the deficient enzyme in hereditary tyrosinemia type 1. Biochim Biophys Acta. 1993 Jan 22;1180(3):250–256. doi: 10.1016/0925-4439(93)90046-4. [DOI] [PubMed] [Google Scholar]
  15. Lem J., Chin A. C., Thayer M. J., Leach R. J., Fournier R. E. Coordinate regulation of two genes encoding gluconeogenic enzymes by the trans-dominant locus Tse-1. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7302–7306. doi: 10.1073/pnas.85.19.7302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindstedt S., Holme E., Lock E. A., Hjalmarson O., Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992 Oct 3;340(8823):813–817. doi: 10.1016/0140-6736(92)92685-9. [DOI] [PubMed] [Google Scholar]
  17. MacGregor G. R., Mogg A. E., Burke J. F., Caskey C. T. Histochemical staining of clonal mammalian cell lines expressing E. coli beta galactosidase indicates heterogeneous expression of the bacterial gene. Somat Cell Mol Genet. 1987 May;13(3):253–265. doi: 10.1007/BF01535207. [DOI] [PubMed] [Google Scholar]
  18. Michalopoulos G. K., DeFrances M. C. Liver regeneration. Science. 1997 Apr 4;276(5309):60–66. doi: 10.1126/science.276.5309.60. [DOI] [PubMed] [Google Scholar]
  19. Ogden D. A., Mickliem H. S. The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation. 1976 Sep;22(3):287–293. doi: 10.1097/00007890-197609000-00010. [DOI] [PubMed] [Google Scholar]
  20. Overturf K., Al-Dhalimy M., Tanguay R., Brantly M., Ou C. N., Finegold M., Grompe M. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1996 Mar;12(3):266–273. doi: 10.1038/ng0396-266. [DOI] [PubMed] [Google Scholar]
  21. Ponder K. P., Gupta S., Leland F., Darlington G., Finegold M., DeMayo J., Ledley F. D., Chowdhury J. R., Woo S. L. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1217–1221. doi: 10.1073/pnas.88.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rhim J. A., Sandgren E. P., Degen J. L., Palmiter R. D., Brinster R. L. Replacement of diseased mouse liver by hepatic cell transplantation. Science. 1994 Feb 25;263(5150):1149–1152. doi: 10.1126/science.8108734. [DOI] [PubMed] [Google Scholar]
  23. Rhim J. A., Sandgren E. P., Palmiter R. D., Brinster R. L. Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4942–4946. doi: 10.1073/pnas.92.11.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ruppert S., Kelsey G., Schedl A., Schmid E., Thies E., Schütz G. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev. 1992 Aug;6(8):1430–1443. doi: 10.1101/gad.6.8.1430. [DOI] [PubMed] [Google Scholar]
  25. Sandgren E. P., Palmiter R. D., Heckel J. L., Daugherty C. C., Brinster R. L., Degen J. L. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell. 1991 Jul 26;66(2):245–256. doi: 10.1016/0092-8674(91)90615-6. [DOI] [PubMed] [Google Scholar]
  26. Sell S. Liver stem cells. Mod Pathol. 1994 Jan;7(1):105–112. [PubMed] [Google Scholar]
  27. Shiojiri N., Lemire J. M., Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991 May 15;51(10):2611–2620. [PubMed] [Google Scholar]
  28. Sigal S. H., Brill S., Fiorino A. S., Reid L. M. The liver as a stem cell and lineage system. Am J Physiol. 1992 Aug;263(2 Pt 1):G139–G148. doi: 10.1152/ajpgi.1992.263.2.G139. [DOI] [PubMed] [Google Scholar]
  29. Smith D. D., Jr, Campbell J. W. Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver. Proc Natl Acad Sci U S A. 1988 Jan;85(1):160–164. doi: 10.1073/pnas.85.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stöcker E., Wullstein H. K., Bräu G. Zur Regenerationskapazität des Leberepithels junger, wiederholt teilhepatektomierter Ratten. Autoradiographische Untersuchungen nach kontinuierlicher Dauerinfusion von 3H-Thymidin. Virchows Arch B Cell Pathol. 1973 Nov 28;14(2):93–103. [PubMed] [Google Scholar]
  31. Tanguay R. M., Valet J. P., Lescault A., Duband J. L., Laberge C., Lettre F., Plante M. Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am J Hum Genet. 1990 Aug;47(2):308–316. [PMC free article] [PubMed] [Google Scholar]
  32. Thorgeirsson S. S. Hepatic stem cells in liver regeneration. FASEB J. 1996 Sep;10(11):1249–1256. [PubMed] [Google Scholar]