Development and characterization of an experimental model of brain abscess in the rat (original) (raw)

. 1992 Dec;141(6):1299–1307.

Abstract

Brain abscesses were produced in the rat by direct intracerebral injection of agarose beads laden with Staphylococcus aureus. The method proved to be easy, reproducible, effective and was associated with a low mortality rate. The histopathologic features of the experimental abscess are similar to other animal models and to human abscesses. The encapsulation of the lesion, macrophage/microglial response, astrocytic activation, and changes in the surrounding brain parenchyma were studied by immunohistochemistry. Edema, diffuse microglial activation and diffuse astrocytosis characterized the early reaction of the injected cerebral hemisphere. After day 10, edema subsided, and the microglial and astrocytic responses became restricted to the area around the lesion. Fibronectin deposition in the capsule preceded the appearance of myofibroblasts, which was concurrent with the beginning of collagen deposition on day 9. Hypervascularity of the capsule appeared as early as day 6 and persisted through day 28. This study suggests that brain abscess formation can be separated into three components: an initial period of edema and glial activation; an intermediate phase of neovascularization and fibronectin deposition; and a final phase of collagen deposition and progressive fibrosis. This new model offers an excellent paradigm for the analysis of neural tissue reaction and de novo fibrous tissue deposition.

1299

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britt R. H., Enzmann D. R., Yeager A. S. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg. 1981 Oct;55(4):590–603. doi: 10.3171/jns.1981.55.4.0590. [DOI] [PubMed] [Google Scholar]
  2. Cash H. A., Woods D. E., McCullough B., Johanson W. G., Jr, Bass J. A. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis. 1979 Mar;119(3):453–459. doi: 10.1164/arrd.1979.119.3.453. [DOI] [PubMed] [Google Scholar]
  3. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  4. Graeber M. B., Streit W. J., Kreutzberg G. W. Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res. 1989 Jan;22(1):103–106. doi: 10.1002/jnr.490220114. [DOI] [PubMed] [Google Scholar]
  5. HASSLER O., FORSGREN A. EXPERIMENTAL ABSCESS IN BRAIN AND SUBCUTIS; A MICROANGIOGRAPHIC STUDY IN THE RABBIT. Acta Pathol Microbiol Scand. 1964;62:59–67. doi: 10.1111/apm.1964.62.1.59. [DOI] [PubMed] [Google Scholar]
  6. Hickey W. F., Gonatas N. K., Kimura H., Wilson D. B. Identification and quantitation of T lymphocyte subsets found in the spinal cord of the Lewis rat during acute experimental allergic encephalomyelitis. J Immunol. 1983 Dec;131(6):2805–2809. [PubMed] [Google Scholar]
  7. Hickey W. F., Kimura H. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2082–2086. doi: 10.1073/pnas.84.7.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hickey W. F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988 Jan 15;239(4837):290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  9. Kurzydlowski H., Wollenschlager C., Venezio F. R., Ghobrial M., Soriano M. M., Reichman O. H. Reevaluation of an experimental streptococcal canine brain abscess model. J Neurosurg. 1987 Nov;67(5):717–720. doi: 10.3171/jns.1987.67.5.0717. [DOI] [PubMed] [Google Scholar]
  10. Long W. D., Meacham W. F. Experimental method for producing brain abscesses in dogs with evaluation of the effect of dexamethasone and antibiotic therapy on the pathogenesis of intracerebral abscesses. Surg Forum. 1968;19:437–438. [PubMed] [Google Scholar]
  11. Mampalam T. J., Rosenblum M. L. Trends in the management of bacterial brain abscesses: a review of 102 cases over 17 years. Neurosurgery. 1988 Oct;23(4):451–458. doi: 10.1227/00006123-198810000-00008. [DOI] [PubMed] [Google Scholar]
  12. Matsumoto Y., Hara N., Tanaka R., Fujiwara M. Immunohistochemical analysis of the rat central nervous system during experimental allergic encephalomyelitis, with special reference to Ia-positive cells with dendritic morphology. J Immunol. 1986 May 15;136(10):3668–3676. [PubMed] [Google Scholar]
  13. Matsuura H., Kudo M., Ikeda Y., Isayama K., Nakazawa S. A model of brain abscess: septic homologous blood clot emboli in rats. J Neurosurg. 1986 Jan;64(1):125–127. doi: 10.3171/jns.1986.64.1.0125. [DOI] [PubMed] [Google Scholar]
  14. Molinari G. F., Smith L., Goldstein M. N., Satran R. Brain abscess from septic cerebral embolism: an experimental model. Neurology. 1973 Nov;23(11):1205–1210. doi: 10.1212/wnl.23.11.1205. [DOI] [PubMed] [Google Scholar]
  15. Schroeder K. A., McKeever P. E., Schaberg D. R., Hoff J. T. Effect of dexamethasone on experimental brain abscess. J Neurosurg. 1987 Feb;66(2):264–269. doi: 10.3171/jns.1987.66.2.0264. [DOI] [PubMed] [Google Scholar]
  16. Skalli O., Schürch W., Seemayer T., Lagacé R., Montandon D., Pittet B., Gabbiani G. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest. 1989 Feb;60(2):275–285. [PubMed] [Google Scholar]
  17. Svanteson B., Nordström C. H., Rausing A. Non-traumatic brain abscess. Epidemiology, clinical symptoms and therapeutic results. Acta Neurochir (Wien) 1988;94(1-2):57–65. doi: 10.1007/BF01406617. [DOI] [PubMed] [Google Scholar]
  18. Vass K., Lassmann H. Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol. 1990 Oct;137(4):789–800. [PMC free article] [PubMed] [Google Scholar]
  19. Wallenfang T., Bohl J., Kretzschmar K. Evolution of brain abscess in cats formation of capsule and resolution of brain edema. Neurosurg Rev. 1980;3(2):101–111. doi: 10.1007/BF01644062. [DOI] [PubMed] [Google Scholar]
  20. Winn H. R., Mendes M., Moore P., Wheeler C., Rodeheaver G. Production of experimental brain abscess in the rat. J Neurosurg. 1979 Nov;51(5):685–690. doi: 10.3171/jns.1979.51.5.0685. [DOI] [PubMed] [Google Scholar]
  21. Wood J. H., Doppman J. L., Lightfoote W. E., 2nd, Girton M., Ommaya A. K. Role of vascular proliferation on angiographic appearance and encapsulation of experimental traumatic and metastatic brain abscesses. J Neurosurg. 1978 Feb;48(2):264–273. doi: 10.3171/jns.1978.48.2.0264. [DOI] [PubMed] [Google Scholar]
  22. Yildizhan A., Paşaoğlu A., Kandemir B. Effect of dexamethasone on various stages of experimental brain abscess. Acta Neurochir (Wien) 1989;96(3-4):141–148. doi: 10.1007/BF01456174. [DOI] [PubMed] [Google Scholar]
  23. de Louvois J., Gortavai P., Hurley R. Bacteriology of abscesses of the central nervous system: a multicentre prospective study. Br Med J. 1977 Oct 15;2(6093):981–984. doi: 10.1136/bmj.2.6093.981. [DOI] [PMC free article] [PubMed] [Google Scholar]