Fluorescent in situ hybridization in routinely processed bone marrow aspirate clot and core biopsy sections (original) (raw)

. 1994 Dec;145(6):1309–1314.

Abstract

Fluorescent in situ hybridization (FISH) is a technique which complements conventional cytogenetic banding analysis by allowing the evaluation of cells in interphase as well as metaphase. This technique has been used to study air-dried peripheral blood and bone marrow aspirate smears. We have applied the FISH technique to study routinely processed sections of bone marrow aspirate clot and decalcified core biopsy specimens, fixed in either formalin or B5 and embedded in paraffin. We evaluated 28 specimens (8 aspirate clot and 20 core biopsy sections) for chromosome 8 copy number, studied previously by conventional cytogenetics, and found the following distribution: 15 with disomy, 11 with trisomy, and 2 with tetrasomy. Using a chromosome 8 alpha-satellite probe, we detected fluorescent hybridization signals in 18 of 28 specimens (64%); 6 of 8 (75%) aspirate clot sections, and 12 of 20 (60%) core biopsy sections. Ten of 13 (77%) B5-fixed and 8 of 15 (53%) formalin-fixed specimens had hybridizing signals. Specimen age was a significant factor; 10 of 11 (91%) specimens processed within the last 6 months showed signals, in contrast with 8 of 17 (47%) specimens older than 6 months. In the positive specimens, 200 cells were analyzed in areas where individual cells could be identified. In the disomic specimens, two signals per cell were seen in 34 to 66% of the cells. Rare cells (0-2%) with three signals were detected. In the trisomic specimens, three signals per cell were seen in 19 to 46% of the cells. In the tetrasomic specimens, four signals per cell were seen in 15 to 25% of the cells. We conclude that the FISH technique may be useful in the detection of numerical chromosomal abnormalities such as trisomy and tetrasomy 8 in routinely processed bone marrow aspirate clot and decalcified core biopsy sections.

1309

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi J. Interphase cytogenetic analysis in the diagnosis and study of neoplastic disorders. Am J Clin Pathol. 1991 Apr;95(4 Suppl 1):S22–S28. [PubMed] [Google Scholar]
  2. Anastasi J., Le Beau M. M., Vardiman J. W., Fernald A. A., Larson R. A., Rowley J. D. Detection of trisomy 12 in chronic lymphocytic leukemia by fluorescence in situ hybridization to interphase cells: a simple and sensitive method. Blood. 1992 Apr 1;79(7):1796–1801. [PubMed] [Google Scholar]
  3. Anastasi J., Le Beau M. M., Vardiman J. W., Westbrook C. A. Detection of numerical chromosomal abnormalities in neoplastic hematopoietic cells by in situ hybridization with a chromosome-specific probe. Am J Pathol. 1990 Jan;136(1):131–139. [PMC free article] [PubMed] [Google Scholar]
  4. Arnoldus E. P., Dreef E. J., Noordermeer I. A., Verheggen M. M., Thierry R. F., Peters A. C., Cornelisse C. J., Van der Ploeg M., Raap A. K. Feasibility of in situ hybridisation with chromosome specific DNA probes on paraffin wax embedded tissue. J Clin Pathol. 1991 Nov;44(11):900–904. doi: 10.1136/jcp.44.11.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Babu V. R., Wiktor A. A fluorescence in situ hybridization technique for retrospective cytogenetic analysis. Cytogenet Cell Genet. 1991;57(1):16–17. doi: 10.1159/000133104. [DOI] [PubMed] [Google Scholar]
  6. Chen Z., Morgan R., Berger C. S., Sandberg A. A. Application of fluorescence in situ hybridization in hematological disorders. Cancer Genet Cytogenet. 1992 Oct 1;63(1):62–69. doi: 10.1016/0165-4608(92)90066-h. [DOI] [PubMed] [Google Scholar]
  7. Hedley D. W., Friedlander M. L., Taylor I. W., Rugg C. A., Musgrove E. A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem. 1983 Nov;31(11):1333–1335. doi: 10.1177/31.11.6619538. [DOI] [PubMed] [Google Scholar]
  8. Hopman A. H., van Hooren E., van de Kaa C. A., Vooijs P. G., Ramaekers F. C. Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely processed bladder cancers. Mod Pathol. 1991 Jul;4(4):503–513. [PubMed] [Google Scholar]
  9. Jenkins R. B., Le Beau M. M., Kraker W. J., Borell T. J., Stalboerger P. G., Davis E. M., Penland L., Fernald A., Espinosa R., 3rd, Schaid D. J. Fluorescence in situ hybridization: a sensitive method for trisomy 8 detection in bone marrow specimens. Blood. 1992 Jun 15;79(12):3307–3315. [PubMed] [Google Scholar]
  10. Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
  11. Kim S. Y., Lee J. S., Ro J. Y., Gay M. L., Hong W. K., Hittelman W. N. Interphase cytogenetics in paraffin sections of lung tumors by non-isotopic in situ hybridization. Mapping genotype/phenotype heterogeneity. Am J Pathol. 1993 Jan;142(1):307–317. [PMC free article] [PubMed] [Google Scholar]
  12. MOORHEAD P. S., NOWELL P. C., MELLMAN W. J., BATTIPS D. M., HUNGERFORD D. A. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res. 1960 Sep;20:613–616. doi: 10.1016/0014-4827(60)90138-5. [DOI] [PubMed] [Google Scholar]
  13. Mark H. F. Fluorescent in situ hybridization as an adjunct to conventional cytogenetics. Ann Clin Lab Sci. 1994 Mar-Apr;24(2):153–163. [PubMed] [Google Scholar]
  14. Nederlof P. M., van der Flier S., Raap A. K., Tanke H. J., van der Ploeg M., Kornips F., Geraedts J. P. Detection of chromosome aberrations in interphase tumor nuclei by nonradioactive in situ hybridization. Cancer Genet Cytogenet. 1989 Oct 1;42(1):87–98. doi: 10.1016/0165-4608(89)90011-3. [DOI] [PubMed] [Google Scholar]
  15. Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schofield D. E., Fletcher J. A. Trisomy 12 in pediatric granulosa-stromal cell tumors. Demonstration by a modified method of fluorescence in situ hybridization on paraffin-embedded material. Am J Pathol. 1992 Dec;141(6):1265–1269. [PMC free article] [PubMed] [Google Scholar]
  17. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971 Oct 30;2(7731):971–972. doi: 10.1016/s0140-6736(71)90287-x. [DOI] [PubMed] [Google Scholar]
  18. Thompson C. T., LeBoit P. E., Nederlof P. M., Gray J. W. Thick-section fluorescence in situ hybridization on formalin-fixed, paraffin-embedded archival tissue provides a histogenetic profile. Am J Pathol. 1994 Feb;144(2):237–243. [PMC free article] [PubMed] [Google Scholar]
  19. Walt H., Emmerich P., Cremer T., Hofmann M. C., Bannwart F. Supernumerary chromosome 1 in interphase nuclei of atypical germ cells in paraffin-embedded human seminiferous tubules. Lab Invest. 1989 Nov;61(5):527–531. [PubMed] [Google Scholar]
  20. Yunis J. J., Brunning R. D., Howe R. B., Lobell M. High-resolution chromosomes as an independent prognostic indicator in adult acute nonlymphocytic leukemia. N Engl J Med. 1984 Sep 27;311(13):812–818. doi: 10.1056/NEJM198409273111302. [DOI] [PubMed] [Google Scholar]
  21. Yunis J. J., Rydell R. E., Oken M. M., Arnesen M. A., Mayer M. G., Lobell M. Refined chromosome analysis as an independent prognostic indicator in de novo myelodysplastic syndromes. Blood. 1986 Jun;67(6):1721–1730. [PubMed] [Google Scholar]
  22. Yunis J. J. The chromosomal basis of human neoplasia. Science. 1983 Jul 15;221(4607):227–236. doi: 10.1126/science.6336310. [DOI] [PubMed] [Google Scholar]