The primary afferent depolarizing action of kainate in the rat (original) (raw)

Abstract

Dorsal roots (L3-L7) isolated from immature (1-9 day old) rats were depolarized selectively by kainate (1-100 microM). L-Glutamate (25-100 microM), but not L-aspartate, mimicked the action of kainate. N-methylaspartate had no activity on these preparations and quisqualate was thirty times less active than kainate. Depolarizations evoked by L-glutamate (100-1000 microM) faded rapidly in the presence of L-glutamate. Depolarizations evoked by kainate were depressed during the fade induced by L-glutamate. Certain electrically evoked C-fibre volleys in dorsal roots or leg nerves of rats at any age were selectively depressed or abolished in the presence of kainate. The effect of kainate was more selective than that of gamma-aminobutyric acid or capsaicin. Prolonged treatment of dorsal roots with kainate did not appear to be deleterious to C-fibres. It is suggested that certain primary afferent C-fibres possess kainate receptors which may be activated physiologically by L-glutamate released at their central terminations.

345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Terry L. C., Bray G. M. Spontaneous loss of axons in sympathetic unmyelinated nerve fibers of the rat during development. Brain Res. 1973 May 17;54:360–364. doi: 10.1016/0006-8993(73)90061-9. [DOI] [PubMed] [Google Scholar]
  2. Biscoe T. J., Evans R. H., Headley P. M., Martin M. R., Watkins J. C. Structure-activity relations of excitatory amino acids on frog and rat spinal neurones. Br J Pharmacol. 1976 Nov;58(3):373–382. doi: 10.1111/j.1476-5381.1976.tb07714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. A., Marsh S. Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res. 1978 Nov 3;156(1):187–191. doi: 10.1016/0006-8993(78)90098-7. [DOI] [PubMed] [Google Scholar]
  4. Calvillo O. Primary afferent depolarization of C fibres in the spinal cord of the cat. Can J Physiol Pharmacol. 1978 Feb;56(1):154–157. doi: 10.1139/y78-020. [DOI] [PubMed] [Google Scholar]
  5. Chase R. A., Pearson S., Nunn P. B., Lantos P. L. Comparative toxicities of alpha- and beta-N-oxalyl-L-alpha, beta-diaminopropionic acids to rat spinal cord. Neurosci Lett. 1985 Mar 22;55(1):89–94. doi: 10.1016/0304-3940(85)90317-9. [DOI] [PubMed] [Google Scholar]
  6. Collins G. G., Anson J., Surtees L. Presynaptic kainate and N-methyl-D-aspartate receptors regulate excitatory amino acid release in the olfactory cortex. Brain Res. 1983 Apr 11;265(1):157–159. doi: 10.1016/0006-8993(83)91348-3. [DOI] [PubMed] [Google Scholar]
  7. Coyle J. T., Molliver M. E., Kuhar M. J. In situ injection of kainic acid: a new method for selectively lesioning neural cell bodies while sparing axons of passage. J Comp Neurol. 1978 Jul 15;180(2):301–323. doi: 10.1002/cne.901800208. [DOI] [PubMed] [Google Scholar]
  8. Coyle J. T. Neurotoxic action of kainic acid. J Neurochem. 1983 Jul;41(1):1–11. doi: 10.1111/j.1471-4159.1983.tb11808.x. [DOI] [PubMed] [Google Scholar]
  9. Curtis D. R., Headley P. M., Lodge D. Depolarization of feline primary afferent fibres by acidic amino acids. J Physiol. 1984 Jun;351:461–472. doi: 10.1113/jphysiol.1984.sp015256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies J., Evans R. H., Francis A. A., Watkins J. C. Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system. J Physiol (Paris) 1979;75(6):641–654. [PubMed] [Google Scholar]
  11. Davies J., Evans R. H., Jones A. W., Smith D. A., Watkins J. C. Differential activation and blockade of excitatory amino acid receptors in the mammalian and amphibian central nervous systems. Comp Biochem Physiol C. 1982;72(2):211–224. doi: 10.1016/0306-4492(82)90086-7. [DOI] [PubMed] [Google Scholar]
  12. Desarmenien M., Santangelo F., Loeffler J. P., Feltz P. Comparative study of GABA-mediated depolarizations of lumbar A delta and C primary afferent neurones of the rat. Exp Brain Res. 1984;54(3):521–528. doi: 10.1007/BF00235477. [DOI] [PubMed] [Google Scholar]
  13. Evans R. H. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids. J Physiol. 1980 Jan;298:25–35. doi: 10.1113/jphysiol.1980.sp013064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans R. H., Francis A. A., Jones A. W., Smith D. A., Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br J Pharmacol. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans R. H., Watkins J. C. Specific antagonism of excitant amino acids in the isolated spinal cord of the neonatal rat. Eur J Pharmacol. 1978 Jul 15;50(2):123–129. doi: 10.1016/0014-2999(78)90007-9. [DOI] [PubMed] [Google Scholar]
  16. Ferkany J. W., Zaczek R., Coyle J. T. Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature. 1982 Aug 19;298(5876):757–759. doi: 10.1038/298757a0. [DOI] [PubMed] [Google Scholar]
  17. Fitzgerald M. A study of the cutaneous afferent input to substantia gelatinosa. Neuroscience. 1981;6(11):2229–2237. doi: 10.1016/0306-4522(81)90011-7. [DOI] [PubMed] [Google Scholar]
  18. Fitzgerald M., Woolf C. J. Effects of cutaneous nerve and intraspinal conditioning of C-fibre afferent terminal excitability in decerebrate spinal rats. J Physiol. 1981 Sep;318:25–39. doi: 10.1113/jphysiol.1981.sp013848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hentall I. D., Fields H. L. Segmental and descending influences on intraspinal thresholds of single C-fibers. J Neurophysiol. 1979 Nov;42(6):1527–1537. doi: 10.1152/jn.1979.42.6.1527. [DOI] [PubMed] [Google Scholar]
  20. McBean G. J., Roberts P. J. Glutamate-preferring receptors regulate the release of D-[3H]aspartate from rat hippocampal slices. Nature. 1981 Jun 18;291(5816):593–594. doi: 10.1038/291593a0. [DOI] [PubMed] [Google Scholar]
  21. McLennan H., Lodge D. The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 1979 Jun 15;169(1):83–90. doi: 10.1016/0006-8993(79)90375-5. [DOI] [PubMed] [Google Scholar]
  22. Pearson S., Nunn P. B. The neurolathyrogen, beta-N-oxalyl-L-alpha,beta-diaminopropionic acid, is a potent agonist at 'glutamate preferring' receptors in the frog spinal cord. Brain Res. 1981 Feb 9;206(1):178–182. doi: 10.1016/0006-8993(81)90112-8. [DOI] [PubMed] [Google Scholar]
  23. Slaughter M. M., Miller R. F. The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl aspartate. J Neurosci. 1983 Aug;3(8):1701–1711. doi: 10.1523/JNEUROSCI.03-08-01701.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Slevin J. T., Collins J. F., Coyle J. T. Analogue interactions with the brain receptor labeled by [3H]kainic acid. Brain Res. 1983 Apr 11;265(1):169–172. doi: 10.1016/0006-8993(83)91351-3. [DOI] [PubMed] [Google Scholar]