Mutations in the N-terminal domain of human immunodeficiency virus type 1 nucleocapsid protein affect virion core structure and proviral DNA synthesis (original) (raw)

Abstract

Nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is a small basic nucleic acid binding protein containing two zinc fingers of the form (CX2CX4HX4C) and is present at about 2,000 copies inside the viral core. NCp7 molecules are tightly associated with the genomic RNA dimer to form the nucleocapsid, which also includes reverse transcriptase and integrase proteins. In vitro, NCp7 has been shown to bind specifically to HIV-1 RNA, inducing NCp7-NCp7 interactions. In the viral context, mutagenesis of amino acid residues in the zinc finger domains showed that NCp7 is responsible for the specific incorporation of genomic RNA into virions and is necessary for correct virion assembly and maturation. In this work, we investigated the consequences of mutating conserved basic residues in the N-terminal region that precedes the first zinc finger. Two of the mutants were poorly infectious and showed only limited, though significant, defects in RNA encapsidation and viral protein maturation. Electron microscopy, together with sucrose gradient analysis, revealed defects in particle core structure and heterogeneity among mutant virions. These defects were associated with strong reduction of proviral DNA synthesis and stability in newly infected cells. Taken together, these data show multiple and probably interdependent implications for the NCp7 protein in both early and late phases of the HIV-1 replicative cycle and emphasize it as a target for antiviral drug development.

Full Text

The Full Text of this article is available as a PDF (642.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berkowitz R. D., Ohagen A., Höglund S., Goff S. P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol. 1995 Oct;69(10):6445–6456. doi: 10.1128/jvi.69.10.6445-6456.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camaur D., Trono D. Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J Virol. 1996 Sep;70(9):6106–6111. doi: 10.1128/jvi.70.9.6106-6111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carteau S., Batson S. C., Poljak L., Mouscadet J. F., de Rocquigny H., Darlix J. L., Roques B. P., Käs E., Auclair C. Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J Virol. 1997 Aug;71(8):6225–6229. doi: 10.1128/jvi.71.8.6225-6229.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clavel F., Charneau P. Fusion from without directed by human immunodeficiency virus particles. J Virol. 1994 Feb;68(2):1179–1185. doi: 10.1128/jvi.68.2.1179-1185.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dannull J., Surovoy A., Jung G., Moelling K. Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J. 1994 Apr 1;13(7):1525–1533. doi: 10.1002/j.1460-2075.1994.tb06414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Darlix J. L., Gabus C., Nugeyre M. T., Clavel F., Barré-Sinoussi F. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J Mol Biol. 1990 Dec 5;216(3):689–699. doi: 10.1016/0022-2836(90)90392-Y. [DOI] [PubMed] [Google Scholar]
  10. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  11. Darlix J. L., Vincent A., Gabus C., de Rocquigny H., Roques B. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA. C R Acad Sci III. 1993 Aug;316(8):763–771. [PubMed] [Google Scholar]
  12. De Rocquigny H., Gabus C., Vincent A., Fournié-Zaluski M. C., Roques B., Darlix J. L. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6472–6476. doi: 10.1073/pnas.89.14.6472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dorfman T., Luban J., Goff S. P., Haseltine W. A., Göttlinger H. G. Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1993 Oct;67(10):6159–6169. doi: 10.1128/jvi.67.10.6159-6169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallay P., Swingler S., Song J., Bushman F., Trono D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell. 1995 Nov 17;83(4):569–576. doi: 10.1016/0092-8674(95)90097-7. [DOI] [PubMed] [Google Scholar]
  15. Goff S., Traktman P., Baltimore D. Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J Virol. 1981 Apr;38(1):239–248. doi: 10.1128/jvi.38.1.239-248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorelick R. J., Nigida S. M., Jr, Bess J. W., Jr, Arthur L. O., Henderson L. E., Rein A. Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol. 1990 Jul;64(7):3207–3211. doi: 10.1128/jvi.64.7.3207-3211.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heinzinger N. K., Bukrinsky M. I., Haggerty S. A., Ragland A. M., Kewalramani V., Lee M. A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7311–7315. doi: 10.1073/pnas.91.15.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Housset V., De Rocquigny H., Roques B. P., Darlix J. L. Basic amino acids flanking the zinc finger of Moloney murine leukemia virus nucleocapsid protein NCp10 are critical for virus infectivity. J Virol. 1993 May;67(5):2537–2545. doi: 10.1128/jvi.67.5.2537-2545.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ishikawa Y., Homcy C. J. High efficiency gene transfer into mammalian cells by a double transfection protocol. Nucleic Acids Res. 1992 Aug 25;20(16):4367–4367. doi: 10.1093/nar/20.16.4367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kellam P., Larder B. A. Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J Virol. 1995 Feb;69(2):669–674. doi: 10.1128/jvi.69.2.669-674.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Khan R., Giedroc D. P. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA. J Biol Chem. 1992 Apr 5;267(10):6689–6695. [PubMed] [Google Scholar]
  22. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lapadat-Tapolsky M., De Rocquigny H., Van Gent D., Roques B., Plasterk R., Darlix J. L. Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res. 1993 Feb 25;21(4):831–839. doi: 10.1093/nar/21.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li M. S., Garcia-Asua G., Bhattacharyya U., Mascagni P., Austen B. M., Roberts M. M. The Vpr protein of human immunodeficiency virus type 1 binds to nucleocapsid protein p7 in vitro. Biochem Biophys Res Commun. 1996 Jan 5;218(1):352–355. doi: 10.1006/bbrc.1996.0061. [DOI] [PubMed] [Google Scholar]
  25. McDermott J., Farrell L., Ross R., Barklis E. Structural analysis of human immunodeficiency virus type 1 Gag protein interactions, using cysteine-specific reagents. J Virol. 1996 Aug;70(8):5106–5114. doi: 10.1128/jvi.70.8.5106-5114.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morellet N., Jullian N., De Rocquigny H., Maigret B., Darlix J. L., Roques B. P. Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. EMBO J. 1992 Aug;11(8):3059–3065. doi: 10.1002/j.1460-2075.1992.tb05377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morellet N., de Rocquigny H., Mély Y., Jullian N., Déméné H., Ottmann M., Gérard D., Darlix J. L., Fournie-Zaluski M. C., Roques B. P. Conformational behaviour of the active and inactive forms of the nucleocapsid NCp7 of HIV-1 studied by 1H NMR. J Mol Biol. 1994 Jan 7;235(1):287–301. doi: 10.1016/s0022-2836(05)80033-6. [DOI] [PubMed] [Google Scholar]
  28. Ottmann M., Gabus C., Darlix J. L. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity. J Virol. 1995 Mar;69(3):1778–1784. doi: 10.1128/jvi.69.3.1778-1784.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pager J., Coulaud D., Delain E. Electron microscopy of the nucleocapsid from disrupted Moloney murine leukemia virus and of associated type VI collagen-like filaments. J Virol. 1994 Jan;68(1):223–232. doi: 10.1128/jvi.68.1.223-232.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paillart J. C., Berthoux L., Ottmann M., Darlix J. L., Marquet R., Ehresmann B., Ehresmann C. A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol. 1996 Dec;70(12):8348–8354. doi: 10.1128/jvi.70.12.8348-8354.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Planelles V., Bachelerie F., Jowett J. B., Haislip A., Xie Y., Banooni P., Masuda T., Chen I. S. Fate of the human immunodeficiency virus type 1 provirus in infected cells: a role for vpr. J Virol. 1995 Sep;69(9):5883–5889. doi: 10.1128/jvi.69.9.5883-5889.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poon D. T., Wu J., Aldovini A. Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol. 1996 Oct;70(10):6607–6616. doi: 10.1128/jvi.70.10.6607-6616.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rice W. G., Schaeffer C. A., Harten B., Villinger F., South T. L., Summers M. F., Henderson L. E., Bess J. W., Jr, Arthur L. O., McDougal J. S. Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature. 1993 Feb 4;361(6411):473–475. doi: 10.1038/361473a0. [DOI] [PubMed] [Google Scholar]
  34. Rice W. G., Supko J. G., Malspeis L., Buckheit R. W., Jr, Clanton D., Bu M., Graham L., Schaeffer C. A., Turpin J. A., Domagala J. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science. 1995 Nov 17;270(5239):1194–1197. doi: 10.1126/science.270.5239.1194. [DOI] [PubMed] [Google Scholar]
  35. Sandell L. L., Zakian V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 1993 Nov 19;75(4):729–739. doi: 10.1016/0092-8674(93)90493-a. [DOI] [PubMed] [Google Scholar]
  36. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  37. Simon J. H., Malim M. H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol. 1996 Aug;70(8):5297–5305. doi: 10.1128/jvi.70.8.5297-5305.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith S. D., Shatsky M., Cohen P. S., Warnke R., Link M. P., Glader B. E. Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res. 1984 Dec;44(12 Pt 1):5657–5660. [PubMed] [Google Scholar]
  39. Taddeo B., Haseltine W. A., Farnet C. M. Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration. J Virol. 1994 Dec;68(12):8401–8405. doi: 10.1128/jvi.68.12.8401-8405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanchou V., Delaunay T., De Rocquigny H., Bodeus M., Darlix J. L., Roques B., Benarous R. Monoclonal antibody-mediated inhibition of RNA binding and annealing activities of HIV type 1 nucleocapsid protein. AIDS Res Hum Retroviruses. 1994 Aug;10(8):983–993. doi: 10.1089/aid.1994.10.983. [DOI] [PubMed] [Google Scholar]
  41. Tanchou V., Gabus C., Rogemond V., Darlix J. L. Formation of stable and functional HIV-1 nucleoprotein complexes in vitro. J Mol Biol. 1995 Oct 6;252(5):563–571. doi: 10.1006/jmbi.1995.0520. [DOI] [PubMed] [Google Scholar]
  42. Tummino P. J., Scholten J. D., Harvey P. J., Holler T. P., Maloney L., Gogliotti R., Domagala J., Hupe D. The in vitro ejection of zinc from human immunodeficiency virus (HIV) type 1 nucleocapsid protein by disulfide benzamides with cellular anti-HIV activity. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):969–973. doi: 10.1073/pnas.93.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Turpin J. A., Terpening S. J., Schaeffer C. A., Yu G., Glover C. J., Felsted R. L., Sausville E. A., Rice W. G. Inhibitors of human immunodeficiency virus type 1 zinc fingers prevent normal processing of gag precursors and result in the release of noninfectious virus particles. J Virol. 1996 Sep;70(9):6180–6189. doi: 10.1128/jvi.70.9.6180-6189.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu W., Henderson L. E., Copeland T. D., Gorelick R. J., Bosche W. J., Rein A., Levin J. G. Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. J Virol. 1996 Oct;70(10):7132–7142. doi: 10.1128/jvi.70.10.7132-7142.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang Y., Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol. 1995 Sep;69(9):5716–5722. doi: 10.1128/jvi.69.9.5716-5722.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zybarth G., Carter C. Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol. 1995 Jun;69(6):3878–3884. doi: 10.1128/jvi.69.6.3878-3884.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]