Functional correlation between cell adhesive properties and some cell surface proteins (original) (raw)

Abstract

The adhesive properties of Chinese hamster V79 cells were analyzed and characterized by various cell dissociation treatments. The comparisons of aggregability among cells dissociated with EDTA, trypsin + Ca2+, and trypsin + EDTA, revealed that these cells have two adhesion mechanisms, a Ca2+-independent and a Ca2+-dependent one. The former did not depend on temperature, whereas the latter occurred only at physiological temperatures. Both mechanisms were trypsin sensitive, but the Ca2+- dependent one was protected by Ca2+ against trypsinization. In morphological studies, the Ca2+-independent adhesion appeared to be a simple agglutination or flocculation of cells, whereas the Ca2+- dependent adhesion seemed to be more physiological, being accompanied by cell deformation resulting in the increase of contact area between adjacent cells. Lactoperoxidase-catalyzed iodination of cell surface proteins revealed that several proteins are more intensely labeled in cells with Ca2+-independent adhesiveness than in cells without that property. It was also found that a cell surface protein with a molecular weight of approximately 150,000 is present only in cells with Ca2+-dependent adhesiveness. The iodination and trypsinization of this protein were protected by Ca2+, suggesting its reactivity to Ca2+. Possible mechanisms for each adhesion property are discussed, taking into account the correlation of these proteins with cell adhesiveness.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong P. B., Jones D. P. On the role of metal cations in ceullular adhesion: cation specificity. J Exp Zool. 1968 Mar;167(3):275–282. doi: 10.1002/jez.1401670303. [DOI] [PubMed] [Google Scholar]
  2. Collins M. Electrokinetic properties of dissociated chick embryo cells. Calcium ion binding by neural retinal cells. J Exp Zool. 1966 Oct;163(1):39–47. doi: 10.1002/jez.1401630104. [DOI] [PubMed] [Google Scholar]
  3. Curtis A. S., Greaves M. F. The inhibition of cell aggregation by a pure serum protein. J Embryol Exp Morphol. 1965 Jun;13(3):309–326. [PubMed] [Google Scholar]
  4. Deman J. J., Bruyneel E. A., Mareel M. M. A study on the mechanism of intercellular adhesion. Effects of neuraminidase, calcium, and trypsin on the aggregation of suspended HeLa cells. J Cell Biol. 1974 Mar;60(3):641–652. doi: 10.1083/jcb.60.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
  6. Edwards J. G., Campbell J. A., Robson R. T., Vicker M. G. Trypsinized BHK21 cells aggregate in the presence of metabolic inhibitors and in the absence of divalent cations. J Cell Sci. 1975 Dec;19(3):653–657. doi: 10.1242/jcs.19.3.653. [DOI] [PubMed] [Google Scholar]
  7. Edwards J. G., Campbell J. A. The aggregation of trypsinized BHK21 cells. J Cell Sci. 1971 Jan;8(1):53–71. doi: 10.1242/jcs.8.1.53. [DOI] [PubMed] [Google Scholar]
  8. FORD D. K., YERGANIAN G. Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst. 1958 Aug;21(2):393–425. [PubMed] [Google Scholar]
  9. Galli P., Brenna A., Camilli de P., Meldolesi J. Extracellular calcium and the organization of tight junctions in pancreatic acinar cells. Exp Cell Res. 1976 Apr;99(1):178–183. doi: 10.1016/0014-4827(76)90694-7. [DOI] [PubMed] [Google Scholar]
  10. Hornby J. E. Measurements of cell adhesion. II. Quantitative study of the effect of divalent ions on cell adhesion. J Embryol Exp Morphol. 1973 Oct;30(2):511–518. [PubMed] [Google Scholar]
  11. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells. J Cell Biol. 1975 Feb;64(2):438–460. doi: 10.1083/jcb.64.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juliano R. L., Behar-Bannelier M. An evaluation of techniques for labelling the surface proteins of cultured mammalian cells. Biochim Biophys Acta. 1975 Jan 28;375(2):249–267. doi: 10.1016/0005-2736(75)90193-5. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lloyd C. W., Rees D. A., Smith C. G., Judge F. J. Mechanisms of cell adhesion: early-forming junctions between aggregating fibroblasts. J Cell Sci. 1976 Dec;22(3):671–684. doi: 10.1242/jcs.22.3.671. [DOI] [PubMed] [Google Scholar]
  16. McGuire E. J. Intercellular adhesive selectivity. II. Properties of embryonic chick liver cell-cell adhesion. J Cell Biol. 1976 Jan;68(1):90–100. doi: 10.1083/jcb.68.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moscona A. A., Moscona M. H. Aggregation of embryonic cells in a serum-free medium and its inhibition at suboptimal temperatures. Exp Cell Res. 1966 Mar;41(3):697–702. doi: 10.1016/s0014-4827(66)80126-x. [DOI] [PubMed] [Google Scholar]
  18. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  19. PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pagano R. E., Takeichi M. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts. Role of cell surface proteins. J Cell Biol. 1977 Aug;74(2):531–546. doi: 10.1083/jcb.74.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phillips D. R. Effect of trypsin on the exposed polypeptides and glycoproteins in the human platelet membrane. Biochemistry. 1972 Nov 21;11(24):4582–4588. doi: 10.1021/bi00774a025. [DOI] [PubMed] [Google Scholar]
  22. Phillips D. R., Morrison M. The arrangement of proteins in the human erythrocyte membrane. Biochem Biophys Res Commun. 1970 Jul 27;40(2):284–289. doi: 10.1016/0006-291x(70)91007-7. [DOI] [PubMed] [Google Scholar]
  23. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  24. Rutishauser U., Thiery J. P., Brackenbury R., Sela B. A., Edelman G. M. Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci U S A. 1976 Feb;73(2):577–581. doi: 10.1073/pnas.73.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stambrook P. J., Sisken J. E. Induced changes in the rates of uridine- 3 H uptake and incorporation during the G 1 and S periods of synchronized Chinese hamster cells. J Cell Biol. 1972 Mar;52(3):514–525. doi: 10.1083/jcb.52.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinberg M. S., Armstrong P. B., Granger R. E. On the recovery of adhesiveness by trypsin-dissociated cells. J Membr Biol. 1973;13(2):97–128. doi: 10.1007/BF01868223. [DOI] [PubMed] [Google Scholar]
  27. Takeichi M., Okada T. S. Roles of magnesium and calcium ions in cell-to-substrate adhesion. Exp Cell Res. 1972 Sep;74(1):51–60. doi: 10.1016/0014-4827(72)90480-6. [DOI] [PubMed] [Google Scholar]
  28. Urushihara H., Takeichi M., Hakura A., Okada T. S. Different cation requirements for aggregation of BHK cells and their transformed derivatives. J Cell Sci. 1976 Dec;22(3):685–695. doi: 10.1242/jcs.22.3.685. [DOI] [PubMed] [Google Scholar]
  29. Vicker M. G., Edwards J. G. The effect of neuraminidase on the aggregation of BHK21 cells and BHK21 cells transformed by polyoma virus. J Cell Sci. 1972 May;10(3):759–768. doi: 10.1242/jcs.10.3.759. [DOI] [PubMed] [Google Scholar]
  30. Vosbeck K., Roth S. Assay of intercellular adhesiveness using cell-coated Sephadex beads as collecting particles. J Cell Sci. 1976 Dec;22(3):657–670. doi: 10.1242/jcs.22.3.657. [DOI] [PubMed] [Google Scholar]