A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance (original) (raw)

Abstract

The process of wound repair in monolayers of the intestinal epithelial cell line, Caco-2BBe, was analyzed by a combination of time-lapse differential interference contrast (DIC) video and immunofluorescence microscopy, and laser scanning confocal immunofluorescence microscopy (LSCIM). DIC video analysis revealed that stab wounds made in Caco-2BBe monolayers healed by two distinct processes: (a) Extension of lamellipodia into the wounds; and (b) Purse string closure of the wound by distinct arcs or rings formed by cells bordering the wound. The arcs and rings which effected purse string closure appeared sharp and sheer in DIC, spanned between two and eight individual cells along the wound border, and contracted in a concerted fashion. Immunofluorescence analysis of the wounds demonstrated that the arcs and rings contained striking accumulations of actin filaments, myosin-II, villin, and tropomyosin. In contrast, arcs and rings contained no apparent enrichment of microtubules, brush border myosin-I immunogens, or myosin- V. LSCIM analysis confirmed the localization of actin filaments, myosin- II, villin, and tropomyosin in arcs and rings at wound borders. ZO-1 (a tight junction protein), also accumulated in arcs and rings around wounds, despite the fact that cell-cell contacts are absent at wound borders. Sucrase-isomaltase, an apically-localized integral membrane protein, maintained an apical localization in cells where arcs or rings were formed, but was found in lamellipodia extending into wounds in cells where arcs failed to form. Time-course, LSCIM quantification of actin, myosin II, and ZO-1 revealed that accumulation of these proteins within arcs and rings at the wound edge began within 5 minutes and peaked within 30-60 minutes of wounding. Actin filaments, myosin-II, and ZO-1 achieved 10-, 3-, and 4-fold enrichments, respectively, relative to cell edges which did not border wounds. The results demonstrate that wounded Caco-2BBe monolayers assemble a novel cytoskeletal structure at the borders of wounds. The results further suggest that this structure plays at least two roles in wound repair; first, mediation of concerted, purse string movement of cells into the area of the wound and second, maintenance of apical/basolateral polarity in cells which border the wound.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Van Itallie C. M., Peterson M. D., Stevenson B. R., Carew E. A., Mooseker M. S. ZO-1 mRNA and protein expression during tight junction assembly in Caco-2 cells. J Cell Biol. 1989 Sep;109(3):1047–1056. doi: 10.1083/jcb.109.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnside B. Microtubules and microfilaments in newt neuralation. Dev Biol. 1971 Nov;26(3):416–441. doi: 10.1016/0012-1606(71)90073-x. [DOI] [PubMed] [Google Scholar]
  3. Carboni J. M., Conzelman K. A., Adams R. A., Kaiser D. A., Pollard T. D., Mooseker M. S. Structural and immunological characterization of the myosin-like 110-kD subunit of the intestinal microvillar 110K-calmodulin complex: evidence for discrete myosin head and calmodulin-binding domains. J Cell Biol. 1988 Nov;107(5):1749–1757. doi: 10.1083/jcb.107.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
  5. Espreafico E. M., Cheney R. E., Matteoli M., Nascimento A. A., De Camilli P. V., Larson R. E., Mooseker M. S. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol. 1992 Dec;119(6):1541–1557. doi: 10.1083/jcb.119.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feil W., Wenzl E., Vattay P., Starlinger M., Sogukoglu T., Schiessel R. Repair of rabbit duodenal mucosa after acid injury in vivo and in vitro. Gastroenterology. 1987 Jun;92(6):1973–1986. doi: 10.1016/0016-5085(87)90632-9. [DOI] [PubMed] [Google Scholar]
  7. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GRILLO H. C., WATTS G. T., GROSS J. Studies in wound healing: I. Contraction and the wound contents. Ann Surg. 1958 Aug;148(2):145–160. doi: 10.1097/00000658-195808000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gabbiani G., Chaponnier C., Hüttner I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol. 1978 Mar;76(3):561–568. doi: 10.1083/jcb.76.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gabbiani G., Gabbiani F., Lombardi D., Schwartz S. M. Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2361–2364. doi: 10.1073/pnas.80.8.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon S. R., Essner E., Rothstein H. In situ demonstration of actin in normal and injured ocular tissues using 7-nitrobenz-2-oxa-1,3-diazole phallacidin. Cell Motil. 1982;2(4):343–354. doi: 10.1002/cm.970020404. [DOI] [PubMed] [Google Scholar]
  12. Gordon S. R., Staley C. A. Role of the cytoskeleton during injury-induced cell migration in corneal endothelium. Cell Motil Cytoskeleton. 1990;16(1):47–57. doi: 10.1002/cm.970160107. [DOI] [PubMed] [Google Scholar]
  13. Gotlieb A. I., May L. M., Subrahmanyan L., Kalnins V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol. 1981 Nov;91(2 Pt 1):589–594. doi: 10.1083/jcb.91.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gumbiner B., Stevenson B., Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol. 1988 Oct;107(4):1575–1587. doi: 10.1083/jcb.107.4.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardin J., Keller R. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development. 1988 May;103(1):211–230. doi: 10.1242/dev.103.1.211. [DOI] [PubMed] [Google Scholar]
  16. Harris A. S., Anderson J. P., Yurchenco P. D., Green L. A., Ainger K. J., Morrow J. S. Mechanisms of cytoskeletal regulation: functional and antigenic diversity in human erythrocyte and brain beta spectrin. J Cell Biochem. 1986;30(1):51–69. doi: 10.1002/jcb.240300107. [DOI] [PubMed] [Google Scholar]
  17. Hergott G. J., Sandig M., Kalnins V. I. Cytoskeletal organization of migrating retinal pigment epithelial cells during wound healing in organ culture. Cell Motil Cytoskeleton. 1989;13(2):83–93. doi: 10.1002/cm.970130203. [DOI] [PubMed] [Google Scholar]
  18. Imhof B. A., Vollmers H. P., Goodman S. L., Birchmeier W. Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell. 1983 Dec;35(3 Pt 2):667–675. doi: 10.1016/0092-8674(83)90099-5. [DOI] [PubMed] [Google Scholar]
  19. Louvard D., Kedinger M., Hauri H. P. The differentiating intestinal epithelial cell: establishment and maintenance of functions through interactions between cellular structures. Annu Rev Cell Biol. 1992;8:157–195. doi: 10.1146/annurev.cb.08.110192.001105. [DOI] [PubMed] [Google Scholar]
  20. Madara J. L. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol. 1990 Jun;116(2):177–184. doi: 10.1007/BF01868675. [DOI] [PubMed] [Google Scholar]
  21. Martin P., Lewis J. Actin cables and epidermal movement in embryonic wound healing. Nature. 1992 Nov 12;360(6400):179–183. doi: 10.1038/360179a0. [DOI] [PubMed] [Google Scholar]
  22. McCormack S. A., Viar M. J., Johnson L. R. Migration of IEC-6 cells: a model for mucosal healing. Am J Physiol. 1992 Sep;263(3 Pt 1):G426–G435. doi: 10.1152/ajpgi.1992.263.3.G426. [DOI] [PubMed] [Google Scholar]
  23. Moore R., Carlson S., Madara J. L. Villus contraction aids repair of intestinal epithelium after injury. Am J Physiol. 1989 Aug;257(2 Pt 1):G274–G283. doi: 10.1152/ajpgi.1989.257.2.G274. [DOI] [PubMed] [Google Scholar]
  24. Nelson W. J., Veshnock P. J. Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1987 Jun;104(6):1527–1537. doi: 10.1083/jcb.104.6.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nusrat A., Delp C., Madara J. L. Intestinal epithelial restitution. Characterization of a cell culture model and mapping of cytoskeletal elements in migrating cells. J Clin Invest. 1992 May;89(5):1501–1511. doi: 10.1172/JCI115741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pepper M. S., Spray D. C., Chanson M., Montesano R., Orci L., Meda P. Junctional communication is induced in migrating capillary endothelial cells. J Cell Biol. 1989 Dec;109(6 Pt 1):3027–3038. doi: 10.1083/jcb.109.6.3027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peterson M. D., Mooseker M. S. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992 Jul;102(Pt 3):581–600. doi: 10.1242/jcs.102.3.581. [DOI] [PubMed] [Google Scholar]
  28. Quaroni A. Crypt cell antigen expression in human colon tumor cell lines: analysis with a panel of monoclonal antibodies to CaCo-2 luminal membrane components. J Natl Cancer Inst. 1986 Apr;76(4):571–585. doi: 10.1093/jnci/76.4.571. [DOI] [PubMed] [Google Scholar]
  29. Radice G. P. The spreading of epithelial cells during wound closure in Xenopus larvae. Dev Biol. 1980 Apr;76(1):26–46. doi: 10.1016/0012-1606(80)90360-7. [DOI] [PubMed] [Google Scholar]
  30. Rodriguez-Boulan E., Powell S. K. Polarity of epithelial and neuronal cells. Annu Rev Cell Biol. 1992;8:395–427. doi: 10.1146/annurev.cb.08.110192.002143. [DOI] [PubMed] [Google Scholar]
  31. Rutten M. J., Ito S. Morphology and electrophysiology of guinea pig gastric mucosal repair in vitro. Am J Physiol. 1983 Feb;244(2):G171–G182. doi: 10.1152/ajpgi.1983.244.2.G171. [DOI] [PubMed] [Google Scholar]
  32. Schroeder T. E. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morphol. 1970 Apr;23(2):427–462. [PubMed] [Google Scholar]
  33. Selden S. C., 3rd, Schwartz S. M. Cytochalasin B inhibition of endothelial proliferation at wound edges in vitro. J Cell Biol. 1979 May;81(2):348–354. doi: 10.1083/jcb.81.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Siliciano J. D., Goodenough D. A. Localization of the tight junction protein, ZO-1, is modulated by extracellular calcium and cell-cell contact in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1988 Dec;107(6 Pt 1):2389–2399. doi: 10.1083/jcb.107.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stanisstreet M., Wakely J., England M. A. Scanning electron microscopy of wound healing in Xenopus and chicken embryos. J Embryol Exp Morphol. 1980 Oct;59:341–353. [PubMed] [Google Scholar]
  36. Svanes K., Ito S., Takeuchi K., Silen W. Restitution of the surface epithelium of the in vitro frog gastric mucosa after damage with hyperosmolar sodium chloride. Morphologic and physiologic characteristics. Gastroenterology. 1982 Jun;82(6):1409–1426. [PubMed] [Google Scholar]
  37. Takeuchi S. Wound healing in the cornea of the chick embryo. IV. Promotion of the migratory activity of isolated corneal epithelium in culture by the application of tension. Dev Biol. 1979 May;70(1):232–240. doi: 10.1016/0012-1606(79)90019-8. [DOI] [PubMed] [Google Scholar]
  38. Takeuchi S. Wound healing in the cornea of the chick embryo. V. An observation and quantitative assessment of the cell shapes in the isolated corneal epithelium during spreading in vitro. Cell Tissue Res. 1983;229(1):109–127. doi: 10.1007/BF00217884. [DOI] [PubMed] [Google Scholar]
  39. Vasiliev J. M., Gelfand I. M., Domnina L. V., Rappoport R. I. Wound healing processes in cell cultures. Exp Cell Res. 1969 Jan;54(1):83–93. doi: 10.1016/0014-4827(69)90296-1. [DOI] [PubMed] [Google Scholar]
  40. Wang A. Z., Ojakian G. K., Nelson W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J Cell Sci. 1990 Jan;95(Pt 1):137–151. doi: 10.1242/jcs.95.1.137. [DOI] [PubMed] [Google Scholar]
  41. Watts G. T., Grillo H. C., Gross J. Studies in Wound Healing: II. The Role of Granulation Tissue in Contraction. Ann Surg. 1958 Aug;148(2):153–160. doi: 10.1097/00000658-195808000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. West A. B., Isaac C. A., Carboni J. M., Morrow J. S., Mooseker M. S., Barwick K. W. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology. 1988 Feb;94(2):343–352. doi: 10.1016/0016-5085(88)90421-0. [DOI] [PubMed] [Google Scholar]
  43. Wollner D. A., Nelson W. J. Establishing and maintaining epithelial cell polarity. Roles of protein sorting, delivery and retention. J Cell Sci. 1992 Jun;102(Pt 2):185–190. doi: 10.1242/jcs.102.2.185. [DOI] [PubMed] [Google Scholar]
  44. Wong M. K., Gotlieb A. I. The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization. J Cell Biol. 1988 Nov;107(5):1777–1783. doi: 10.1083/jcb.107.5.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Young P. E., Pesacreta T. C., Kiehart D. P. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development. 1991 Jan;111(1):1–14. doi: 10.1242/dev.111.1.1. [DOI] [PubMed] [Google Scholar]
  46. Young P. E., Richman A. M., Ketchum A. S., Kiehart D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 1993 Jan;7(1):29–41. doi: 10.1101/gad.7.1.29. [DOI] [PubMed] [Google Scholar]