Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation- regulated protein essential for development (original) (raw)
Abstract
Two cDNAs, isolated from a Xenopus laevis embryonic library, encode proteins of 168 amino acids, both of which are 77% identical to chick cofilin and 66% identical to chick actin-depolymerizing factor (ADF), two structurally and functionally related proteins. These Xenopus ADF/cofilins (XADs) differ from each other in 12 residues spread throughout the sequence but do not differ in charge. Purified GST- fusion proteins have pH-dependent actin-depolymerizing and F-actin- binding activities similar to chick ADF and cofilin. Similarities in the developmental and tissue specific expression, embryonic localization, and in the cDNA sequence of the noncoding regions, suggest that the two XACs arise from allelic variants of the pseudotetraploid X. laevis. Immunofluorescence localization of XAC in oocyte sections with an XAC-specific monoclonal antibody shows it to be diffuse in the cortical cytoplasm. After fertilization, increased immunostaining is observed in two regions: along the membrane, particularly that of the vegetal hemisphere, and at the interface between the cortical and animal hemisphere cytoplasm. The cleavage furrow and the mid-body structure are stained at the end of first cleavage. Neuroectoderm derived tissues, notochord, somites, and epidermis stain heavily either continuously or transiently from stages 18-34. A phosphorylated form of XAC (pXAC) was identified by 2D Western blotting, and it is the only species found in oocytes. Dephosphorylation of >60% of the pXAC occurs within 30 min after fertilization. Injection of one blastomere at the 2 cell stage, either with constitutively active XAC or with an XAC inhibitory antibody, blocked cleavage of only the injected blastomere in a concentration- dependent manner without inhibiting nuclear division. The cleavage furrow of eggs injected with constitutively active XAC completely regressed. Blastomeres injected with neutralized antibody developed normally. These results suggest that XAC is necessary for cytokinesis and that its activity must be properly regulated for cleavage to occur.
Full Text
The Full Text of this article is available as a PDF (4.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe H., Endo T., Yamamoto K., Obinata T. Sequence of cDNAs encoding actin depolymerizing factor and cofilin of embryonic chicken skeletal muscle: two functionally distinct actin-regulatory proteins exhibit high structural homology. Biochemistry. 1990 Aug 14;29(32):7420–7425. doi: 10.1021/bi00484a010. [DOI] [PubMed] [Google Scholar]
- Adams M. E., Minamide L. S., Duester G., Bamburg J. R. Nucleotide sequence and expression of a cDNA encoding chick brain actin depolymerizing factor. Biochemistry. 1990 Aug 14;29(32):7414–7420. doi: 10.1021/bi00484a009. [DOI] [PubMed] [Google Scholar]
- Agnew B. J., Minamide L. S., Bamburg J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem. 1995 Jul 21;270(29):17582–17587. doi: 10.1074/jbc.270.29.17582. [DOI] [PubMed] [Google Scholar]
- Bamburg J. R., Bray D. Distribution and cellular localization of actin depolymerizing factor. J Cell Biol. 1987 Dec;105(6 Pt 1):2817–2825. doi: 10.1083/jcb.105.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bamburg J. R., Harris H. E., Weeds A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 1980 Nov 17;121(1):178–182. doi: 10.1016/0014-5793(80)81292-0. [DOI] [PubMed] [Google Scholar]
- Bamburg J. R., Minamide L. S., Morgan T. E., Hayden S. M., Giuliano K. A., Koffer A. Purification and characterization of low-molecular-weight actin-depolymerizing proteins from brain and cultured cells. Methods Enzymol. 1991;196:125–140. doi: 10.1016/0076-6879(91)96014-i. [DOI] [PubMed] [Google Scholar]
- Baorto D. M., Mellado W., Shelanski M. L. Astrocyte process growth induction by actin breakdown. J Cell Biol. 1992 Apr;117(2):357–367. doi: 10.1083/jcb.117.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisbee C. A., Baker M. A., Wilson A. C., Haji-Azimi I., Fischberg M. Albumin phylogeny for clawed frogs (Xenopus). Science. 1977 Feb 25;195(4280):785–787. doi: 10.1126/science.65013. [DOI] [PubMed] [Google Scholar]
- Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Davidson M. M., Haslam R. J. Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca2+. Biochem J. 1994 Jul 1;301(Pt 1):41–47. doi: 10.1042/bj3010041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards K. A., Montague R. A., Shepard S., Edgar B. A., Erikson R. L., Kiehart D. P. Identification of Drosophila cytoskeletal proteins by induction of abnormal cell shape in fission yeast. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4589–4593. doi: 10.1073/pnas.91.10.4589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fishkind D. J., Wang Y. L. New horizons for cytokinesis. Curr Opin Cell Biol. 1995 Feb;7(1):23–31. doi: 10.1016/0955-0674(95)80041-7. [DOI] [PubMed] [Google Scholar]
- Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777–1788. doi: 10.1083/jcb.123.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Gunsalus K. C., Bonaccorsi S., Williams E., Verni F., Gatti M., Goldberg M. L. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol. 1995 Dec;131(5):1243–1259. doi: 10.1083/jcb.131.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harland R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991;36:685–695. doi: 10.1016/s0091-679x(08)60307-6. [DOI] [PubMed] [Google Scholar]
- Harris H. E., Bamburg J. R., Bernstein B. W., Weeds A. G. The depolymerization of actin by specific proteins from plasma and brain: a quantitative assay. Anal Biochem. 1982 Jan 1;119(1):102–114. doi: 10.1016/0003-2697(82)90672-8. [DOI] [PubMed] [Google Scholar]
- Hawkins M., Pope B., Maciver S. K., Weeds A. G. Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry. 1993 Sep 28;32(38):9985–9993. doi: 10.1021/bi00089a014. [DOI] [PubMed] [Google Scholar]
- Hayden S. M., Miller P. S., Brauweiler A., Bamburg J. R. Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry. 1993 Sep 28;32(38):9994–10004. doi: 10.1021/bi00089a015. [DOI] [PubMed] [Google Scholar]
- Iida K., Moriyama K., Matsumoto S., Kawasaki H., Nishida E., Yahara I. Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene. 1993 Feb 14;124(1):115–120. doi: 10.1016/0378-1119(93)90770-4. [DOI] [PubMed] [Google Scholar]
- Iida K., Yahara I. Reversible induction of actin rods in mouse C3H-2K cells by incubation in salt buffers and by treatment with non-ionic detergents. Exp Cell Res. 1986 Jun;164(2):492–506. doi: 10.1016/0014-4827(86)90047-9. [DOI] [PubMed] [Google Scholar]
- Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Léna J. Y., Bamburg J. R., Rabié A., Faivre-Sarrailh C. Actin-depolymerizing factor (ADF) in the cerebellum of the developing rat: a quantitative and immunocytochemical study. J Neurosci Res. 1991 Sep;30(1):18–27. doi: 10.1002/jnr.490300104. [DOI] [PubMed] [Google Scholar]
- McKim K. S., Matheson C., Marra M. A., Wakarchuk M. F., Baillie D. L. The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Mol Gen Genet. 1994 Feb;242(3):346–357. doi: 10.1007/BF00280425. [DOI] [PubMed] [Google Scholar]
- Minamide L. S., Bamburg J. R. A filter paper dye-binding assay for quantitative determination of protein without interference from reducing agents or detergents. Anal Biochem. 1990 Oct;190(1):66–70. doi: 10.1016/0003-2697(90)90134-u. [DOI] [PubMed] [Google Scholar]
- Moon A. L., Janmey P. A., Louie K. A., Drubin D. G. Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol. 1993 Jan;120(2):421–435. doi: 10.1083/jcb.120.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon A., Drubin D. G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell. 1995 Nov;6(11):1423–1431. doi: 10.1091/mbc.6.11.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan T. E., Lockerbie R. O., Minamide L. S., Browning M. D., Bamburg J. R. Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol. 1993 Aug;122(3):623–633. doi: 10.1083/jcb.122.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulholland J., Preuss D., Moon A., Wong A., Drubin D., Botstein D. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol. 1994 Apr;125(2):381–391. doi: 10.1083/jcb.125.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida E., Maekawa S., Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984 Oct 23;23(22):5307–5313. doi: 10.1021/bi00317a032. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Ohta Y., Nishida E., Sakai H., Miyamoto E. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem. 1989 Sep 25;264(27):16143–16148. [PubMed] [Google Scholar]
- Ono S., Minami N., Abe H., Obinata T. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem. 1994 May 27;269(21):15280–15286. [PubMed] [Google Scholar]
- Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
- Rosenblatt J., Peluso P., Mitchison T. J. The bulk of unpolymerized actin in Xenopus egg extracts is ATP-bound. Mol Biol Cell. 1995 Feb;6(2):227–236. doi: 10.1091/mbc.6.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito T., Lamy F., Roger P. P., Lecocq R., Dumont J. E. Characterization and identification as cofilin and destrin of two thyrotropin- and phorbol ester-regulated phosphoproteins in thyroid cells. Exp Cell Res. 1994 May;212(1):49–61. doi: 10.1006/excr.1994.1117. [DOI] [PubMed] [Google Scholar]
- Samstag Y., Eckerskorn C., Wesselborg S., Henning S., Wallich R., Meuer S. C. Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4494–4498. doi: 10.1073/pnas.91.10.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singal P. K., Sanders E. J. An ultrastructural study of the first cleavage of Xenopus embryos. J Ultrastruct Res. 1974 Jun;47(3):433–451. doi: 10.1016/s0022-5320(74)90019-7. [DOI] [PubMed] [Google Scholar]
- Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
- Sun H. Q., Kwiatkowska K., Yin H. L. Actin monomer binding proteins. Curr Opin Cell Biol. 1995 Feb;7(1):102–110. doi: 10.1016/0955-0674(95)80051-4. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Yamaguchi T., Tanaka T., Kawanishi T., Nishimaki-Mogami T., Yamamoto K., Tsuji T., Irimura T., Hayakawa T., Takahashi A. Activation induces dephosphorylation of cofilin and its translocation to plasma membranes in neutrophil-like differentiated HL-60 cells. J Biol Chem. 1995 Aug 18;270(33):19551–19556. doi: 10.1074/jbc.270.33.19551. [DOI] [PubMed] [Google Scholar]
- Vincent J. P., Gerhart J. C. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol. 1987 Oct;123(2):526–539. doi: 10.1016/0012-1606(87)90411-8. [DOI] [PubMed] [Google Scholar]
- Vincent J. P., Oster G. F., Gerhart J. C. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev Biol. 1986 Feb;113(2):484–500. doi: 10.1016/0012-1606(86)90184-3. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Yamagishi T., Yaginuma H., Murakami K., Ueno N. Localization of thymosin beta 4 to the neural tissues during the development of Xenopus laevis, as studied by in situ hybridization and immunohistochemistry. Brain Res Dev Brain Res. 1994 Jun 17;79(2):177–185. doi: 10.1016/0165-3806(94)90122-8. [DOI] [PubMed] [Google Scholar]
- Yonezawa N., Nishida E., Koyasu S., Maekawa S., Ohta Y., Yahara I., Sakai H. Distribution among tissues and intracellular localization of cofilin, a 21kDa actin-binding protein. Cell Struct Funct. 1987 Oct;12(5):443–452. doi: 10.1247/csf.12.443. [DOI] [PubMed] [Google Scholar]
- Yonezawa N., Nishida E., Sakai H. pH control of actin polymerization by cofilin. J Biol Chem. 1985 Nov 25;260(27):14410–14412. [PubMed] [Google Scholar]