Disulfide bonds and the stability of globular proteins (original) (raw)
Abstract
An understanding of the forces that contribute to stability is pivotal in solving the protein-folding problem. Classical theory suggests that disulfide bonds stabilize proteins by reducing the entropy of the denatured state. More recent theories have attempted to expand this idea, suggesting that in addition to configurational entropic effects, enthalpic and native-state effects occur and cannot be neglected. Experimental thermodynamic evidence is examined from two sources: (1) the disruption of naturally occurring disulfides, and (2) the insertion of novel disulfides. The data confirm that enthalpic and native-state effects are often significant. The experimental changes in free energy are compared to those predicted by different theories. The differences between theory and experiment are large near 300 K and do not lend support to any of the current theories regarding the stabilization of proteins by disulfide bonds. This observation is a result of not only deficiencies in the theoretical models but also from difficulties in determining the effects of disulfide bonds on protein stability against the backdrop of numerous subtle stabilizing factors (in both the native and denatured states), which they may also affect.
Full Text
The Full Text of this article is available as a PDF (876.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson W. D., Fink A. L., Perry L. J., Wetzel R. Effect of an engineered disulfide bond on the folding of T4 lysozyme at low temperatures. Biochemistry. 1990 Apr 3;29(13):3331–3337. doi: 10.1021/bi00465a026. [DOI] [PubMed] [Google Scholar]
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Betz S. F., Pielak G. J. Introduction of a disulfide bond into cytochrome c stabilizes a compact denatured state. Biochemistry. 1992 Dec 15;31(49):12337–12344. doi: 10.1021/bi00164a007. [DOI] [PubMed] [Google Scholar]
- Brems D. N., Cass R., Stellwagen E. Conformational transitions of frog heart ferricytochrome c. Biochemistry. 1982 Mar 30;21(7):1488–1493. doi: 10.1021/bi00536a004. [DOI] [PubMed] [Google Scholar]
- Burley S. K., Petsko G. A. Weakly polar interactions in proteins. Adv Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
- Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
- Cooper A., Eyles S. J., Radford S. E., Dobson C. M. Thermodynamic consequences of the removal of a disulphide bridge from hen lysozyme. J Mol Biol. 1992 Jun 20;225(4):939–943. doi: 10.1016/0022-2836(92)90094-z. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
- Eder J., Wilmanns M. Protein engineering of a disulfide bond in a beta/alpha-barrel protein. Biochemistry. 1992 May 12;31(18):4437–4444. doi: 10.1021/bi00133a008. [DOI] [PubMed] [Google Scholar]
- Green S. M., Meeker A. K., Shortle D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry. 1992 Jun 30;31(25):5717–5728. doi: 10.1021/bi00140a005. [DOI] [PubMed] [Google Scholar]
- Gusev N. B., Grabarek Z., Gergely J. Stabilization by a disulfide bond of the N-terminal domain of a mutant troponin C (TnC48/82). J Biol Chem. 1991 Sep 5;266(25):16622–16626. [PubMed] [Google Scholar]
- Hocking J. D., Harris J. I. D-glyceraldehyde-3-phosphate dehydrogenase. Amino-acid sequence of the enzyme from the extreme thermophile Thermus aquaticus. Eur J Biochem. 1980 Jul;108(2):567–579. doi: 10.1111/j.1432-1033.1980.tb04752.x. [DOI] [PubMed] [Google Scholar]
- Ikeguchi M., Sugai S., Fujino M., Sugawara T., Kuwajima K. Contribution of the 6-120 disulfide bond of alpha-lactalbumin to the stabilities of its native and molten globule states. Biochemistry. 1992 Dec 22;31(50):12695–12700. doi: 10.1021/bi00165a021. [DOI] [PubMed] [Google Scholar]
- Kanaya S., Katsuda C., Kimura S., Nakai T., Kitakuni E., Nakamura H., Katayanagi K., Morikawa K., Ikehara M. Stabilization of Escherichia coli ribonuclease H by introduction of an artificial disulfide bond. J Biol Chem. 1991 Apr 5;266(10):6038–6044. [PubMed] [Google Scholar]
- Katz B. A., Kossiakoff A. The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J Biol Chem. 1986 Nov 25;261(33):15480–15485. [PubMed] [Google Scholar]
- Katz B., Kossiakoff A. A. Crystal structures of subtilisin BPN' variants containing disulfide bonds and cavities: concerted structural rearrangements induced by mutagenesis. Proteins. 1990;7(4):343–357. doi: 10.1002/prot.340070406. [DOI] [PubMed] [Google Scholar]
- Kuroki R., Inaka K., Taniyama Y., Kidokoro S., Matsushima M., Kikuchi M., Yutani K. Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95. Biochemistry. 1992 Sep 8;31(35):8323–8328. doi: 10.1021/bi00150a028. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Becktel W. J., Levitt M., Matthews B. W. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6562–6566. doi: 10.1073/pnas.86.17.6562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura M., Matthews B. W. Stabilization of functional proteins by introduction of multiple disulfide bonds. Methods Enzymol. 1991;202:336–356. doi: 10.1016/0076-6879(91)02018-5. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Signor G., Matthews B. W. Substantial increase of protein stability by multiple disulphide bonds. Nature. 1989 Nov 16;342(6247):291–293. doi: 10.1038/342291a0. [DOI] [PubMed] [Google Scholar]
- Mitchinson C., Wells J. A. Protein engineering of disulfide bonds in subtilisin BPN'. Biochemistry. 1989 May 30;28(11):4807–4815. doi: 10.1021/bi00437a043. [DOI] [PubMed] [Google Scholar]
- Pabo C. O., Suchanek E. G. Computer-aided model-building strategies for protein design. Biochemistry. 1986 Oct 7;25(20):5987–5991. doi: 10.1021/bi00368a023. [DOI] [PubMed] [Google Scholar]
- Pantoliano M. W., Ladner R. C., Bryan P. N., Rollence M. L., Wood J. F., Poulos T. L. Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry. 1987 Apr 21;26(8):2077–2082. doi: 10.1021/bi00382a002. [DOI] [PubMed] [Google Scholar]
- Perry L. J., Wetzel R. Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science. 1984 Nov 2;226(4674):555–557. doi: 10.1126/science.6387910. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Saunders A. J., Young G. B., Pielak G. J. Polarity of disulfide bonds. Protein Sci. 1993 Jul;2(7):1183–1184. doi: 10.1002/pro.5560020713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz H., Hinz H. J., Mehlich A., Tschesche H., Wenzel H. R. Stability studies on derivatives of the bovine pancreatic trypsin inhibitor. Biochemistry. 1987 Jun 16;26(12):3544–3551. doi: 10.1021/bi00386a044. [DOI] [PubMed] [Google Scholar]
- Shortle D., Chan H. S., Dill K. A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1992 Feb;1(2):201–215. doi: 10.1002/pro.5560010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D. Probing the determinants of protein folding and stability with amino acid substitutions. J Biol Chem. 1989 Apr 5;264(10):5315–5318. [PubMed] [Google Scholar]
- Sosnick T. R., Trewhella J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry. 1992 Sep 8;31(35):8329–8335. doi: 10.1021/bi00150a029. [DOI] [PubMed] [Google Scholar]
- Srinivasan N., Sowdhamini R., Ramakrishnan C., Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990 Aug;36(2):147–155. doi: 10.1111/j.1399-3011.1990.tb00958.x. [DOI] [PubMed] [Google Scholar]
- Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
- Takagi H., Takahashi T., Momose H., Inouye M., Maeda Y., Matsuzawa H., Ohta T. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem. 1990 Apr 25;265(12):6874–6878. [PubMed] [Google Scholar]
- Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
- Tidor B., Karplus M. The contribution of cross-links to protein stability: a normal mode analysis of the configurational entropy of the native state. Proteins. 1993 Jan;15(1):71–79. doi: 10.1002/prot.340150109. [DOI] [PubMed] [Google Scholar]
- Zhou N. E., Kay C. M., Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry. 1993 Mar 30;32(12):3178–3187. doi: 10.1021/bi00063a033. [DOI] [PubMed] [Google Scholar]