Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand (original) (raw)

Abstract

Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.

Full Text

The Full Text of this article is available as a PDF (789.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell A. J., Bardwell L., Tomkinson A. E., Friedberg E. C. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science. 1994 Sep 30;265(5181):2082–2085. doi: 10.1126/science.8091230. [DOI] [PubMed] [Google Scholar]
  2. Bessho T., Sancar A., Thompson L. H., Thelen M. P. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem. 1997 Feb 7;272(6):3833–3837. doi: 10.1074/jbc.272.6.3833. [DOI] [PubMed] [Google Scholar]
  3. Bredberg A., Söderhäll S. Normal rate of DNA breakage in xeroderma pigmentosum complementation group E cells treated with 8-methoxypsoralen plus near-ultraviolet radiation. Biochim Biophys Acta. 1985 Mar 20;824(3):268–271. doi: 10.1016/0167-4781(85)90058-2. [DOI] [PubMed] [Google Scholar]
  4. Calsou P., Sage E., Moustacchi E., Salles B. Preferential repair incision of cross-links versus monoadducts in psoralen-damaged plasmid DNA by human cell-free extracts. Biochemistry. 1996 Nov 26;35(47):14963–14969. doi: 10.1021/bi9607261. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee P. K., Cantor C. R. Photochemical production of psoralen - DNA monoadducts capable of subsequent photocrosslinking. Nucleic Acids Res. 1978 Oct;5(10):3619–3633. doi: 10.1093/nar/5.10.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng S., Sancar A., Hearst J. E. RecA-dependent incision of psoralen-crosslinked DNA by (A)BC excinuclease. Nucleic Acids Res. 1991 Feb 11;19(3):657–663. doi: 10.1093/nar/19.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng S., Van Houten B., Gamper H. B., Sancar A., Hearst J. E. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem. 1988 Oct 15;263(29):15110–15117. [PubMed] [Google Scholar]
  8. Cimino G. D., Gamper H. B., Isaacs S. T., Hearst J. E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem. 1985;54:1151–1193. doi: 10.1146/annurev.bi.54.070185.005443. [DOI] [PubMed] [Google Scholar]
  9. Cole R. S. Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1064–1068. doi: 10.1073/pnas.70.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dardalhon M., Averbeck D. Pulsed-field gel electrophoresis analysis of the repair of psoralen plus UVA induced DNA photoadducts in Saccharomyces cerevisiae. Mutat Res. 1995 Jan;336(1):49–60. doi: 10.1016/0921-8777(94)00037-7. [DOI] [PubMed] [Google Scholar]
  11. Digweed M., Sperling K. Molecular analysis of Fanconi anaemia. Bioessays. 1996 Jul;18(7):579–585. doi: 10.1002/bies.950180709. [DOI] [PubMed] [Google Scholar]
  12. Evans E., Fellows J., Coffer A., Wood R. D. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 1997 Feb 3;16(3):625–638. doi: 10.1093/emboj/16.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Faruqi A. F., Seidman M. M., Segal D. J., Carroll D., Glazer P. M. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol. 1996 Dec;16(12):6820–6828. doi: 10.1128/mcb.16.12.6820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fishman-Lobell J., Haber J. E. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. doi: 10.1126/science.1411547. [DOI] [PubMed] [Google Scholar]
  15. Fornace A. J., Jr, Little J. B., Weichselbaum R. R. DNA repair in a Fanconi's anemia fibroblast cell strain. Biochim Biophys Acta. 1979 Jan 26;561(1):99–109. doi: 10.1016/0005-2787(79)90494-5. [DOI] [PubMed] [Google Scholar]
  16. Fujiwara Y., Nakamura M., Yokoo S. A new anticancer platinum compound, (-)-(R)-2-aminomethyl-pyrrolidine(1,1-cyclobutanedicarboxylato) platinum(II): DNA interstrand crosslinking, repair and lethal effects in normal human, Fanconi's anaemia and xeroderma pigmentosum cells. Br J Cancer. 1993 Jun;67(6):1285–1292. doi: 10.1038/bjc.1993.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fujiwara Y., Tatsumi M. Cross-link repair in human cells and its possible defect in Fanconi's anemia cells. J Mol Biol. 1977 Jul 15;113(4):635–649. doi: 10.1016/0022-2836(77)90227-3. [DOI] [PubMed] [Google Scholar]
  18. Hoy C. A., Thompson L. H., Mooney C. L., Salazar E. P. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res. 1985 Apr;45(4):1737–1743. [PubMed] [Google Scholar]
  19. Huang J. C., Hsu D. S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12213–12217. doi: 10.1073/pnas.91.25.12213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang J. C., Sancar A. Determination of minimum substrate size for human excinuclease. J Biol Chem. 1994 Jul 22;269(29):19034–19040. [PubMed] [Google Scholar]
  21. Huang J. C., Svoboda D. L., Reardon J. T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664–3668. doi: 10.1073/pnas.89.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Islas A. L., Vos J. M., Hanawalt P. C. Differential introduction and repair of psoralen photoadducts to DNA in specific human genes. Cancer Res. 1991 Jun 1;51(11):2867–2873. [PubMed] [Google Scholar]
  23. Ivanov E. L., Haber J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2245–2251. doi: 10.1128/mcb.15.4.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jachymczyk W. J., von Borstel R. C., Mowat M. R., Hastings P. J. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol Gen Genet. 1981;182(2):196–205. doi: 10.1007/BF00269658. [DOI] [PubMed] [Google Scholar]
  25. Jeggo P. A., Taccioli G. E., Jackson S. P. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays. 1995 Nov;17(11):949–957. doi: 10.1002/bies.950171108. [DOI] [PubMed] [Google Scholar]
  26. Jones B. K., Yeung A. T. DNA base composition determines the specificity of UvrABC endonuclease incision of a psoralen cross-link. J Biol Chem. 1990 Feb 25;265(6):3489–3496. [PubMed] [Google Scholar]
  27. Jones N. J. Genetic analysis of mitomycin C-hypersensitive Chinese hamster cell mutants. Mutagenesis. 1994 Sep;9(5):477–482. doi: 10.1093/mutage/9.5.477. [DOI] [PubMed] [Google Scholar]
  28. Kaye J., Smith C. A., Hanawalt P. C. DNA repair in human cells containing photoadducts of 8-methoxypsoralen or angelicin. Cancer Res. 1980 Mar;40(3):696–702. [PubMed] [Google Scholar]
  29. Kohn K. W. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment--fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1996 Dec 15;56(24):5533–5546. [PubMed] [Google Scholar]
  30. Kumaresan K. R., Hang B., Lambert M. W. Human endonucleolytic incision of DNA 3' and 5' to a site-directed psoralen monoadduct and interstrand cross-link. J Biol Chem. 1995 Dec 22;270(51):30709–30716. doi: 10.1074/jbc.270.51.30709. [DOI] [PubMed] [Google Scholar]
  31. Magaña-Schwencke N., Henriques J. A., Chanet R., Moustacchi E. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1722–1726. doi: 10.1073/pnas.79.6.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matsunaga T., Mu D., Park C. H., Reardon J. T., Sancar A. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem. 1995 Sep 1;270(35):20862–20869. doi: 10.1074/jbc.270.35.20862. [DOI] [PubMed] [Google Scholar]
  33. Matsunaga T., Park C. H., Bessho T., Mu D., Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem. 1996 May 10;271(19):11047–11050. doi: 10.1074/jbc.271.19.11047. [DOI] [PubMed] [Google Scholar]
  34. Miller R. D., Prakash L., Prakash S. Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol Cell Biol. 1982 Aug;2(8):939–948. doi: 10.1128/mcb.2.8.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mu D., Hsu D. S., Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem. 1996 Apr 5;271(14):8285–8294. doi: 10.1074/jbc.271.14.8285. [DOI] [PubMed] [Google Scholar]
  36. Mu D., Park C. H., Matsunaga T., Hsu D. S., Reardon J. T., Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995 Feb 10;270(6):2415–2418. doi: 10.1074/jbc.270.6.2415. [DOI] [PubMed] [Google Scholar]
  37. Mu D., Sancar A. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem. 1997 Mar 21;272(12):7570–7573. doi: 10.1074/jbc.272.12.7570. [DOI] [PubMed] [Google Scholar]
  38. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Munn M. M., Rupp W. D. Interaction of the UvrABC endonuclease with DNA containing a psoralen monoadduct or cross-link. Differential effects of superhelical density and comparison of preincision complexes. J Biol Chem. 1991 Dec 25;266(36):24748–24756. [PubMed] [Google Scholar]
  40. Park C. H., Bessho T., Matsunaga T., Sancar A. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem. 1995 Sep 29;270(39):22657–22660. doi: 10.1074/jbc.270.39.22657. [DOI] [PubMed] [Google Scholar]
  41. Reardon J. T., Spielmann P., Huang J. C., Sastry S., Sancar A., Hearst J. E. Removal of psoralen monoadducts and crosslinks by human cell free extracts. Nucleic Acids Res. 1991 Sep 11;19(17):4623–4629. doi: 10.1093/nar/19.17.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reardon J. T., Thompson L. H., Sancar A. Excision repair in man and the molecular basis of xeroderma pigmentosum syndrome. Cold Spring Harb Symp Quant Biol. 1993;58:605–617. doi: 10.1101/sqb.1993.058.01.067. [DOI] [PubMed] [Google Scholar]
  43. Saffran W. A., Greenberg R. B., Thaler-Scheer M. S., Jones M. M. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res. 1994 Jul 25;22(14):2823–2829. doi: 10.1093/nar/22.14.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sage E., Drobetsky E. A., Moustacchi E. 8-Methoxypsoralen induced mutations are highly targeted at crosslinkable sites of photoaddition on the non-transcribed strand of a mammalian chromosomal gene. EMBO J. 1993 Feb;12(2):397–402. doi: 10.1002/j.1460-2075.1993.tb05671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  46. Sasaki M. S., Tonomura A. A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973 Aug;33(8):1829–1836. [PubMed] [Google Scholar]
  47. Schiestl R. H., Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol. 1988 Sep;8(9):3619–3626. doi: 10.1128/mcb.8.9.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schiestl R. H., Prakash S. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol. 1990 Jun;10(6):2485–2491. doi: 10.1128/mcb.10.6.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sekelsky J. J., McKim K. S., Chin G. M., Hawley R. S. The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics. 1995 Oct;141(2):619–627. doi: 10.1093/genetics/141.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shi Y. B., Gamper H., Hearst J. E. The effects of covalent additions of a psoralen on transcription by E. coli RNA polymerase. Nucleic Acids Res. 1987 Sep 11;15(17):6843–6854. doi: 10.1093/nar/15.17.6843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sladek F. M., Munn M. M., Rupp W. D., Howard-Flanders P. In vitro repair of psoralen-DNA cross-links by RecA, UvrABC, and the 5'-exonuclease of DNA polymerase I. J Biol Chem. 1989 Apr 25;264(12):6755–6765. [PubMed] [Google Scholar]
  52. Stahl F. Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell. 1996 Dec 13;87(6):965–968. doi: 10.1016/s0092-8674(00)81791-2. [DOI] [PubMed] [Google Scholar]
  53. Sung P., Reynolds P., Prakash L., Prakash S. Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. J Biol Chem. 1993 Dec 15;268(35):26391–26399. [PubMed] [Google Scholar]
  54. Svoboda D. L., Taylor J. S., Hearst J. E., Sancar A. DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J Biol Chem. 1993 Jan 25;268(3):1931–1936. [PubMed] [Google Scholar]
  55. Thompson L. H. Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat Res. 1996 Jun 12;363(2):77–88. doi: 10.1016/0921-8777(96)00008-0. [DOI] [PubMed] [Google Scholar]
  56. Tomkinson A. E., Bardwell A. J., Bardwell L., Tappe N. J., Friedberg E. C. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature. 1993 Apr 29;362(6423):860–862. doi: 10.1038/362860a0. [DOI] [PubMed] [Google Scholar]
  57. Van Houten B., Gamper H., Holbrook S. R., Hearst J. E., Sancar A. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8077–8081. doi: 10.1073/pnas.83.21.8077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vos J. M., Hanawalt P. C. DNA interstrand cross-links promote chromosomal integration of a selected gene in human cells. Mol Cell Biol. 1989 Jul;9(7):2897–2905. doi: 10.1128/mcb.9.7.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vos J. M., Hanawalt P. C. Processing of psoralen adducts in an active human gene: repair and replication of DNA containing monoadducts and interstrand cross-links. Cell. 1987 Aug 28;50(5):789–799. doi: 10.1016/0092-8674(87)90337-0. [DOI] [PubMed] [Google Scholar]
  60. Vuksanovic L., Cleaver J. E. Unique cross-link and monoadduct repair characteristics of a xeroderma pigmentosum revertant cell line. Mutat Res. 1987 Nov;184(3):255–263. doi: 10.1016/0167-8817(87)90024-1. [DOI] [PubMed] [Google Scholar]
  61. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  62. Zamble D. B., Mu D., Reardon J. T., Sancar A., Lippard S. J. Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry. 1996 Aug 6;35(31):10004–10013. doi: 10.1021/bi960453+. [DOI] [PubMed] [Google Scholar]
  63. Zdzienicka M. Z. Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutat Res. 1995 May;336(3):203–213. doi: 10.1016/0921-8777(95)00003-3. [DOI] [PubMed] [Google Scholar]
  64. Zhen W., Evans M. K., Haggerty C. M., Bohr V. A. Deficient gene specific repair of cisplatin-induced lesions in Xeroderma pigmentosum and Fanconi's anemia cell lines. Carcinogenesis. 1993 May;14(5):919–924. doi: 10.1093/carcin/14.5.919. [DOI] [PubMed] [Google Scholar]
  65. Zwelling L. A., Michaels S., Schwartz H., Dobson P. P., Kohn K. W. DNA cross-linking as an indicator of sensitivity and resistance of mouse L1210 leukemia to cis-diamminedichloroplatinum(II) and L-phenylalanine mustard. Cancer Res. 1981 Feb;41(2):640–649. [PubMed] [Google Scholar]