Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane (original) (raw)
Abstract
D-glucose transport across the intestinal brush-border membrane involves two transport systems designated here as systems 1 and 2. Kinetic properties for both D-glucose and methyl alpha-D-glucopyranoside transport were measured at 35 degrees C by using brush-border membrane vesicles prepared from either control, fasted (48 hr), or semistarved (10 days) animals. The results show the following: (i) The sugar influx rate by simple diffusion was identical under either altered condition. (ii) Semistarvation stimulated D-glucose uptake by system 2 (both its Vmax and Km increased), whereas system 1 was untouched. (iii) Fasting increased the capacity of system 1 without affecting either Km of system 1 or Vmax and Km of system 2. The effect of fasting on Vmax of system 1 cannot be attributed to indirect effects from changes in ionic permeability because the kinetic difference between control and fasted animals persisted when the membrane potential was short-circuited with equilibrated K+ and valinomycin. This work provides further evidence for the existence of two distinct sodium-activated D-glucose transport systems in the intestinal brush-border membrane, which adapt independently to either semistarvation or fasting.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brot-Laroche E., Alvarado F. Disaccharide uptake by brush-border membrane vesicles lacking the corresponding hydrolases. Biochim Biophys Acta. 1984 Aug 22;775(2):175–181. doi: 10.1016/0005-2736(84)90168-8. [DOI] [PubMed] [Google Scholar]
- Brot-Laroche E., Serrano M. A., Delhomme B., Alvarado F. Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea pig jejunal brush border membrane vesicles. J Biol Chem. 1986 May 15;261(14):6168–6176. [PubMed] [Google Scholar]
- Brot-Laroche E., Supplisson S., Delhomme B., Alcalde A. I., Alvarado F. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside. Biochim Biophys Acta. 1987 Nov 2;904(1):71–80. doi: 10.1016/0005-2736(87)90088-5. [DOI] [PubMed] [Google Scholar]
- Cappelli V., Pietra P. Oxygen availability, dietary restriction and transport of glucose 3-O-methylglucose and fructose in the isolated small intestine of rat. Arch Int Physiol Biochim. 1978 May;86(2):217–226. doi: 10.3109/13813457809069898. [DOI] [PubMed] [Google Scholar]
- Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol. 1977;78:99–159. doi: 10.1007/BFb0027722. [DOI] [PubMed] [Google Scholar]
- Debnam E. S., Levin R. J. Effects of fasting and semistarvation on the kinetics of active and passive sugar absorption across the small intestine in vivo. J Physiol. 1975 Nov;252(3):681–700. doi: 10.1113/jphysiol.1975.sp011165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debnam E. S., Thompson C. S. The effect of fasting on the potential difference across the brush-border membrane of enterocytes in rat small intestine. J Physiol. 1984 Oct;355:449–456. doi: 10.1113/jphysiol.1984.sp015430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groseclose R., Hopfer U. Small intestinal sugar and amino acid transport in semistarvation. Membr Biochem. 1978;2(1):135–148. doi: 10.3109/09687687809063862. [DOI] [PubMed] [Google Scholar]
- Hauser H., Howell K., Dawson R. M., Bowyer D. E. Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim Biophys Acta. 1980 Nov 18;602(3):567–577. doi: 10.1016/0005-2736(80)90335-1. [DOI] [PubMed] [Google Scholar]
- Hindmarsh J. T., Kilby D., Ross B., Wiseman G. Further studies on intestinal active transport during semistarvation. J Physiol. 1967 Jan;188(2):207–218. doi: 10.1113/jphysiol.1967.sp008134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U. Diabetes mellitus: changes in the transport properties of isolated intestinal microvillous membranes. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2027–2031. doi: 10.1073/pnas.72.6.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Karasov W. H., Diamond J. M. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am J Physiol. 1983 Oct;245(4):G443–G462. doi: 10.1152/ajpgi.1983.245.4.G443. [DOI] [PubMed] [Google Scholar]
- Marciani P., Lindi C., Faelli A., Esposito G. Effects of semistarvation on transintestinal D-glucose transport and D-glucose uptake in brush border and basolateral membranes of rat enterocytes. Pflugers Arch. 1987 Mar;408(3):220–223. doi: 10.1007/BF02181462. [DOI] [PubMed] [Google Scholar]
- McManus J. P., Isselbacher K. J. Effect of fasting versus feeding on the rat small intestine. Morphological, biochemical, and functional differences. Gastroenterology. 1970 Aug;59(2):214–221. [PubMed] [Google Scholar]
- Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
- van Melle G., Robinson J. W. A systematic approach to the analysis of intestinal transport kinetics. J Physiol (Paris) 1981 May;77(9):1011–1016. [PubMed] [Google Scholar]