The stimulus-secretion coupling of glucose-induced insulin release. Metabolic and functional effects of NH4+ in rat islets (original) (raw)

Abstract

NH4+ caused a dose-related, rapid, and reversible inhibition of glucose-stimulated insulin release by isolated rat islets. It also inhibited glyceraldehyde-, Ba2+-, and sulfonylurea-stimulated insulun secretion. NH4+ failed to affect glucose utilization and oxidation, glucose-stimulated proinsulin biosynthesis, the concentration of ATP, AD, and AMP, and the intracellular pH. NH4+ also failed to affect the ability of theophylline and cytochalasin B to augment glucose-induced insulin release. However, in the presence and absence of glucose, accumulation of NH4+ in islet cells was associated with a fall in the concentration of NADH and HADPH and a concomitant alteration of 86Rb+ and 45Ca2+ (or 133Ba2+) handling. These findings suggest that reduced pyridine nucleotides, generated by the metabolism of endogenous of exogenous nutrients, may modulate ionophoretic processes in the islet cells and by doing so, affect the net uptake of Ca2+ and subsequent release of insulin.

868

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boschero A. C., Kawazu S., Duncan G., Malaisse W. J. Effect of glucose on K+ handling by pancreatic islets. FEBS Lett. 1977 Nov 1;83(1):151–154. doi: 10.1016/0014-5793(77)80662-5. [DOI] [PubMed] [Google Scholar]
  2. Brisson G. R., Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3',5'-cyclic monophosphate. J Clin Invest. 1972 Feb;51(2):232–241. doi: 10.1172/JCI106808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamalaun R. A., Tager J. M. Nitrogen metabolism in the perfused rat liver. Biochim Biophys Acta. 1970 Oct 27;222(1):119–134. doi: 10.1016/0304-4165(70)90357-0. [DOI] [PubMed] [Google Scholar]
  4. Dean P. M., Matthews E. K., Sakamoto Y. Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J Physiol. 1975 Mar;246(2):459–478. doi: 10.1113/jphysiol.1975.sp010899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feldman J. M., Lebovitz H. E. Ammonium ion, a modulator of insulin secretion. Am J Physiol. 1971 Oct;221(4):1027–1032. doi: 10.1152/ajplegacy.1971.221.4.1027. [DOI] [PubMed] [Google Scholar]
  6. Hellman B., Sehlin J., Täljedal I. B. The intracellular pH of mammalian pancreatic -cells. Endocrinology. 1972 Jan;90(1):335–337. doi: 10.1210/endo-90-1-335. [DOI] [PubMed] [Google Scholar]
  7. Levy J., Herchuelz A., Sener A., Malaisse-Lagae F., Malaisse W. J. Cytochalasin B-induced impariment of glucose metabolism in islets of Langerhans. Endocrinology. 1976 Feb;98(2):429–437. doi: 10.1210/endo-98-2-429. [DOI] [PubMed] [Google Scholar]
  8. Malaisse-Lagae F., Brisson G. R., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. VI. Analogy between the insulinotropic mechanisms of sugars and amino acids. Horm Metab Res. 1971 Nov;3(6):374–378. doi: 10.1055/s-0028-1094124. [DOI] [PubMed] [Google Scholar]
  9. Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
  10. Malaisse W. J., Boschero A. C., Kawazu S., Hutton J. C. The stimulus secretion coupling of glucose-induced insulin release. XXVII. Effect of glucose on K+ fluxes in isolated islets. Pflugers Arch. 1978 Mar 20;373(3):237–242. doi: 10.1007/BF00580830. [DOI] [PubMed] [Google Scholar]
  11. Malaisse W. J., Brisson G. R., Baird L. E. Stimulus-secretion coupling of glucose-induced insulin release. X. Effect of glucose on 45 Ca efflux from perifused islets. Am J Physiol. 1973 Feb;224(2):389–394. doi: 10.1152/ajplegacy.1973.224.2.389. [DOI] [PubMed] [Google Scholar]
  12. Malaisse W. J., Brisson G., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. I. Interaction of epinephrine and alkaline earth cations. J Lab Clin Med. 1970 Dec;76(6):895–902. [PubMed] [Google Scholar]
  13. Malaisse W. J. Calcium ion fluxes and insulin release in pancreatic islet [proceedings]. Biochem Soc Trans. 1977;5(4):872–875. doi: 10.1042/bst0050872. [DOI] [PubMed] [Google Scholar]
  14. Malaisse W. J., Herchuelz A., Devis G., Somers G., Boschero A. C., Hutton J. C., Kawazu S., Sener A., Atwater I. J., Duncan G. Regulation of calcium fluxes and their regulatory roles in pancreatic islets. Ann N Y Acad Sci. 1978 Apr 28;307:562–582. doi: 10.1111/j.1749-6632.1978.tb41982.x. [DOI] [PubMed] [Google Scholar]
  15. Malaisse W. J., Hutton J. C., Kawazu S., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic effects of menadione in isolated islets. Eur J Biochem. 1978 Jun 1;87(1):121–130. doi: 10.1111/j.1432-1033.1978.tb12357.x. [DOI] [PubMed] [Google Scholar]
  16. Malaisse W. J., Malaisse-Lagae F., Walker M. O., Lacy P. E. The stimulus-secretion coupling of glucose-induced insulin release. V. The participation of a microtubular-microfilamentous system. Diabetes. 1971 May;20(5):257–265. doi: 10.2337/diab.20.5.257. [DOI] [PubMed] [Google Scholar]
  17. Malaisse W. J., Sener A., Boschero A. C., Kawazu S., Devis G., Somers G. The stimulus-secretion coupling of glucose-induced insulin release. Cationic and secretory effects of menadione in the endocrine pancreas. Eur J Biochem. 1978 Jun 1;87(1):111–120. doi: 10.1111/j.1432-1033.1978.tb12356.x. [DOI] [PubMed] [Google Scholar]
  18. Malaisse W. J., Sener A., Mahy M. The stimulus-secretion coupling of glucose-induced insulin release. Sorbitol metabolism in isolated islets. Eur J Biochem. 1974 Sep 1;47(2):365–370. doi: 10.1111/j.1432-1033.1974.tb03701.x. [DOI] [PubMed] [Google Scholar]
  19. Pipeleers D. G., Marichal M., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XIV. Glucose regulation of insular biosynthetic activity. Endocrinology. 1973 Nov;93(5):1001–1011. doi: 10.1210/endo-93-5-1001. [DOI] [PubMed] [Google Scholar]
  20. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  21. Schlienger J. L., Imler M., Stahl J. Diabetogenic effect and inhibition of insulin secretion induced in normal rats by ammonium infusions. Diabetologia. 1975 Oct;11(5):439–443. doi: 10.1007/BF00429913. [DOI] [PubMed] [Google Scholar]
  22. Schlienger J. L., Imler M., Stahl J. Diminution de la tolérance glucosée et de l'insulino-secrétion après perfusion de sels d'ammonium chez l'homme normal et chez des malades atteints de stéatose hépatique ou de cirrhose. Biol Gastroenterol (Paris) 1974 Apr-May;7(2):101–110. [PubMed] [Google Scholar]
  23. Sherwin R., Joshi P., Hendler R., Felig P., Conn H. O. Hyperglucagonemia in Laennec's cirrhosis. The role of portal-systemic shunting. N Engl J Med. 1974 Jan 31;290(5):239–242. doi: 10.1056/NEJM197401312900502. [DOI] [PubMed] [Google Scholar]
  24. Sies H., Häussinger D., Grosskopf M. Mitochondrial nicotinamide nucleotide systems: ammonium chloride responses and associated metabolic transitions in hemoglobin-free perfused rat liver. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):305–320. doi: 10.1515/bchm2.1974.355.1.305. [DOI] [PubMed] [Google Scholar]
  25. Somers G., Devis G., Van Obberghen E., Malaisse W. J. Calcium antagonists and islet function. II. Interaction of theophylline and verapamil. Endocrinology. 1976 Jul;99(1):114–124. doi: 10.1210/endo-99-1-114. [DOI] [PubMed] [Google Scholar]
  26. Somers G., Devis G., van Obberghen E., Malaisse W. J. Calcium-antagonists and islet function. VI. Effects of barium. Pflugers Arch. 1976 Sep 3;365(1):21–28. doi: 10.1007/BF00583624. [DOI] [PubMed] [Google Scholar]
  27. Tischler M. E., Hecht P., Williamson J. R. Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat liver cells. FEBS Lett. 1977 Apr 1;76(1):99–104. doi: 10.1016/0014-5793(77)80129-4. [DOI] [PubMed] [Google Scholar]
  28. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watkins D., Cooperstein S. J., Dixit P. K., Lazarow A. Insulin secretion from toadfish islet tissue stimulated by pyridine nucleotides. Science. 1968 Oct 11;162(3850):283–284. doi: 10.1126/science.162.3850.283. [DOI] [PubMed] [Google Scholar]
  30. van Obberghen E., Somers G., Devis G., Vaughan G. D., Malaisse-Lagae F., Orci L., Malaisse W. J. Dynamics of insulin release and microtubular-microfilamentous system. I. Effect of cytochalasin B. J Clin Invest. 1973 May;52(5):1041–1051. doi: 10.1172/JCI107269. [DOI] [PMC free article] [PubMed] [Google Scholar]