Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice (original) (raw)

Abstract

In homozygous weaver (wv/wv) mutant mice, nearly 50% of the dopaminergic substantia nigra neurons degenerate by postnatal day 20. We have now determined that the total number of dopaminergic neurons in the ventral midbrains of a litter of obligatory homozygous weaver pups and a litter of normal wild-type control pups indicates that no significant differences are present between groups at birth. To test the hypothesis that the subsequent degeneration of these neurons is linked to their time of origin, [3H]thymidine autoradiography was combined with tyrosine hydroxylase immunocytochemistry to construct neurogenetic timetables on postnatal day 20 in wild-type mice and weaver homozygotes. Both groups have the same span of neurogenesis but have statistically different proportions of neurons generated on specific days. In wild-type mice, more than half of the dopaminergic neurons originate on or after embryonic day 12. In contrast, over two-thirds of the surviving dopaminergic neurons in homozygous weaver mice originate on or before embryonic day 11. Our data suggest that the weaver gene does not interfere with the generation of dopaminergic neurons, but it preferentially kills late-generated dopaminergic neurons between birth and postnatal day 20.

9137

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J., Bayer S. A. Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol. 1981 Jun 1;198(4):677–716. doi: 10.1002/cne.901980409. [DOI] [PubMed] [Google Scholar]
  2. Bayer S. A., Altman J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog Neurobiol. 1987;29(1):57–106. doi: 10.1016/0301-0082(87)90015-3. [DOI] [PubMed] [Google Scholar]
  3. Bayer S. A., Altman J., Russo R. J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993 Spring;14(1):83–144. [PubMed] [Google Scholar]
  4. Bayer S. A., Triarhou L. C., Thomas J. D., Ghetti B. Correlated quantitative studies of the neostriatum, nucleus accumbens, substantia nigra, and ventral tegmental area in normal and weaver mutant mice. J Neurosci. 1994 Nov;14(11 Pt 2):6901–6910. doi: 10.1523/JNEUROSCI.14-11-06901.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gaspar P., Ben Jelloun N., Febvret A. Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience. 1994 Jul;61(2):293–305. doi: 10.1016/0306-4522(94)90232-1. [DOI] [PubMed] [Google Scholar]
  6. Gerfen C. R., Baimbridge K. G., Thibault J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci. 1987 Dec;7(12):3935–3944. doi: 10.1523/JNEUROSCI.07-12-03935.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghetti B., Triarhou L. C. Degeneration of mesencephalic dopamine neurons in weaver mutant mice. Neurochem Int. 1992 Mar;20 (Suppl):305S–307S. doi: 10.1016/0197-0186(92)90257-r. [DOI] [PubMed] [Google Scholar]
  8. Graveland G. A., Williams R. S., DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science. 1985 Feb 15;227(4688):770–773. doi: 10.1126/science.3155875. [DOI] [PubMed] [Google Scholar]
  9. Graybiel A. M., Ohta K., Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neurosci. 1990 Mar;10(3):720–733. doi: 10.1523/JNEUROSCI.10-03-00720.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gupta M., Felten D. L., Ghetti B. Selective loss of monoaminergic neurons in weaver mutant mice--an immunocytochemical study. Brain Res. 1987 Feb 3;402(2):379–382. doi: 10.1016/0006-8993(87)90050-3. [DOI] [PubMed] [Google Scholar]
  11. Iacopino A., Christakos S., German D., Sonsalla P. K., Altar C. A. Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Brain Res Mol Brain Res. 1992 Apr;13(3):251–261. doi: 10.1016/0169-328x(92)90033-8. [DOI] [PubMed] [Google Scholar]
  12. Lavoie B., Parent A. Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport. 1991 Oct;2(10):601–604. doi: 10.1097/00001756-199110000-00012. [DOI] [PubMed] [Google Scholar]
  13. Roffler-Tarlov S., Graybiel A. M. The postnatal development of the dopamine-containing innervation of dorsal and ventral striatum: effects of the weaver gene. J Neurosci. 1987 Aug;7(8):2364–2372. [PMC free article] [PubMed] [Google Scholar]
  14. Schmidt M. J., Sawyer B. D., Perry K. W., Fuller R. W., Foreman M. M., Ghetti B. Dopamine deficiency in the weaver mutant mouse. J Neurosci. 1982 Mar;2(3):376–380. doi: 10.1523/JNEUROSCI.02-03-00376.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simon J. R., Richter J. A., Ghetti B. Age-dependent alterations in dopamine content, tyrosine hydroxylase activity, and dopamine uptake in the striatum of the weaver mutant mouse. J Neurochem. 1994 Feb;62(2):543–548. doi: 10.1046/j.1471-4159.1994.62020543.x. [DOI] [PubMed] [Google Scholar]
  16. Triarhou L. C., Low W. C., Ghetti B. Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8789–8793. doi: 10.1073/pnas.83.22.8789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Triarhou L. C., Norton J., Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res. 1988;70(2):256–265. doi: 10.1007/BF00248351. [DOI] [PubMed] [Google Scholar]