Cell biological mechanisms of multidrug resistance in tumors (original) (raw)

Abstract

Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

3497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. H., Prat A. G., Gerweck L., Seneveratne T., Arceci R. J., Kramer R., Guidotti G., Cantiello H. F. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):312–316. doi: 10.1073/pnas.90.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altenberg G. A., Young G., Horton J. K., Glass D., Belli J. A., Reuss L. Changes in intra- or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9735–9738. doi: 10.1073/pnas.90.20.9735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ambudkar S. V., Lelong I. H., Zhang J., Cardarelli C. O., Gottesman M. M., Pastan I. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8472–8476. doi: 10.1073/pnas.89.18.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersen O. S. Elementary aspects of acid-base permeation and pH regulation. Ann N Y Acad Sci. 1989;574:333–353. doi: 10.1111/j.1749-6632.1989.tb25169.x. [DOI] [PubMed] [Google Scholar]
  5. Arsenault A. L., Ling V., Kartner N. Altered plasma membrane ultrastructure in multidrug-resistant cells. Biochim Biophys Acta. 1988 Feb 18;938(2):315–321. doi: 10.1016/0005-2736(88)90169-1. [DOI] [PubMed] [Google Scholar]
  6. Barrand M. A., Rhodes T., Center M. S., Twentyman P. R. Chemosensitisation and drug accumulation effects of cyclosporin A, PSC-833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein. Eur J Cancer. 1993;29A(3):408–415. doi: 10.1016/0959-8049(93)90397-x. [DOI] [PubMed] [Google Scholar]
  7. Beck W. T. Cellular pharmacology of Vinca alkaloid resistance and its circumvention. Adv Enzyme Regul. 1984;22:207–227. doi: 10.1016/0065-2571(84)90015-3. [DOI] [PubMed] [Google Scholar]
  8. Beck W. T., Cirtain M. C., Lefko J. L. Energy-dependent reduced drug binding as a mechanism of Vinca alkaloid resistance in human leukemic lymphoblasts. Mol Pharmacol. 1983 Nov;24(3):485–492. [PubMed] [Google Scholar]
  9. Beck W. T., Danks M. K., Cirtain M. C., van Heiningen J. N. Cross-resistance patterns and antigen expression in Vinca alkaloid- and other multiple drug-resistant human leukemic cell lines. Prog Clin Biol Res. 1986;223:3–10. [PubMed] [Google Scholar]
  10. Beck W. T. Mechanisms of multidrug resistance in human tumor cells. The roles of P-glycoprotein, DNA topoisomerase II, and other factors. Cancer Treat Rev. 1990 Dec;17 (Suppl A):11–20. doi: 10.1016/0305-7372(90)90011-4. [DOI] [PubMed] [Google Scholar]
  11. Beck W. T. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987 Sep 15;36(18):2879–2887. doi: 10.1016/0006-2952(87)90198-5. [DOI] [PubMed] [Google Scholar]
  12. Beck W. T. Unknotting the complexities of multidrug resistance: the involvement of DNA topoisomerases in drug action and resistance. J Natl Cancer Inst. 1989 Nov 15;81(22):1683–1685. doi: 10.1093/jnci/81.22.1683. [DOI] [PubMed] [Google Scholar]
  13. Blobe G. C., Sachs C. W., Khan W. A., Fabbro D., Stabel S., Wetsel W. C., Obeid L. M., Fine R. L., Hannun Y. A. Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKC alpha. J Biol Chem. 1993 Jan 5;268(1):658–664. [PubMed] [Google Scholar]
  14. Boron W. F. Intracellular pH regulation in epithelial cells. Annu Rev Physiol. 1986;48:377–388. doi: 10.1146/annurev.ph.48.030186.002113. [DOI] [PubMed] [Google Scholar]
  15. Burke T. G., Sartorelli A. C., Tritton T. R. Selectivity of the anthracyclines for negatively charged model membranes: role of the amino group. Cancer Chemother Pharmacol. 1988;21(4):274–280. doi: 10.1007/BF00264191. [DOI] [PubMed] [Google Scholar]
  16. CALENDI E., DIMARCO A., REGGIANI M., SCARPINATO B., VALENTINI L. ON PHYSICO-CHEMICAL INTERACTIONS BETWEEN DAUNOMYCIN AND NUCLEIC ACIDS. Biochim Biophys Acta. 1965 May 11;103:25–49. doi: 10.1016/0005-2787(65)90539-3. [DOI] [PubMed] [Google Scholar]
  17. Carlsen S. A., Till J. E., Ling V. Modulation of membrane drug permeability in Chinese hamster ovary cells. Biochim Biophys Acta. 1976 Dec 14;455(3):900–912. doi: 10.1016/0005-2736(76)90059-6. [DOI] [PubMed] [Google Scholar]
  18. Casazza A. M., Pratesi G., Giuliani F., Formelli F., Di Marco A. Enhancement of the antitumor activity of adriamycin by Tween 80. Tumori. 1978 Apr 30;64(2):115–129. doi: 10.1177/030089167806400202. [DOI] [PubMed] [Google Scholar]
  19. Chen C. J., Chin J. E., Ueda K., Clark D. P., Pastan I., Gottesman M. M., Roninson I. B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986 Nov 7;47(3):381–389. doi: 10.1016/0092-8674(86)90595-7. [DOI] [PubMed] [Google Scholar]
  20. Chesler M., Kraig R. P. Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol. 1987 Oct;253(4 Pt 2):R666–R670. doi: 10.1152/ajpregu.1987.253.4.R666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  22. Coley H. M., Amos W. B., Twentyman P. R., Workman P. Examination by laser scanning confocal fluorescence imaging microscopy of the subcellular localisation of anthracyclines in parent and multidrug resistant cell lines. Br J Cancer. 1993 Jun;67(6):1316–1323. doi: 10.1038/bjc.1993.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Coley H. M., Twentyman P. R., Workman P. Improved cellular accumulation is characteristic of anthracyclines which retain high activity in multidrug resistant cell lines, alone or in combination with verapamil or cyclosporin A. Biochem Pharmacol. 1989 Dec 15;38(24):4467–4475. doi: 10.1016/0006-2952(89)90658-8. [DOI] [PubMed] [Google Scholar]
  24. Dalmark M. Characteristics of doxorubicin transport in human red blood cells. Scand J Clin Lab Invest. 1981 Nov;41(7):633–639. doi: 10.3109/00365518109090508. [DOI] [PubMed] [Google Scholar]
  25. Dalmark M., Johansen P. Molecular association between doxorubicin (adriamycin) and DNA-derived bases, nucleosides, nucleotides, other aromatic compounds, and proteins in aqueous solution. Mol Pharmacol. 1982 Jul;22(1):158–165. [PubMed] [Google Scholar]
  26. Dalmark M., Storm H. H. A Fickian diffusion transport process with features of transport catalysis. Doxorubicin transport in human red blood cells. J Gen Physiol. 1981 Oct;78(4):349–364. doi: 10.1085/jgp.78.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Oct 25;323(3):466–483. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  28. Dhir R., Grizzuti K., Kajiji S., Gros P. Modulatory effects on substrate specificity of independent mutations at the serine939/941 position in predicted transmembrane domain 11 of P-glycoproteins. Biochemistry. 1993 Sep 14;32(36):9492–9499. doi: 10.1021/bi00087a030. [DOI] [PubMed] [Google Scholar]
  29. Di Marco A., Casazza A. M., Dasdia T., Necco A., Pratesi G., Rivolta P., Velcich A., Zaccara A., Zunino F. Changes of activity of daunorubicin, adriamycin and stereoisomers following the introduction or removal of hydroxyl groups in the amino sugar moiety. Chem Biol Interact. 1977 Dec;19(3):291–302. doi: 10.1016/0009-2797(77)90052-7. [DOI] [PubMed] [Google Scholar]
  30. Di Marco A. Mechanism of action and mechanism of resistance to antineoplastic agents that bind to DNA. Antibiot Chemother (1971) 1978;23:216–227. doi: 10.1159/000401485. [DOI] [PubMed] [Google Scholar]
  31. Di Marco A., Silvestrini R., Di Marco S., Dasdia T. Inhibiting effect of the new cytotoxic antibiotic daunomycin on nucleic acids and mitotic activity of HeLa cells. J Cell Biol. 1965 Dec;27(3):545–550. doi: 10.1083/jcb.27.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Doige C. A., Yu X., Sharom F. J. The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochim Biophys Acta. 1993 Feb 23;1146(1):65–72. doi: 10.1016/0005-2736(93)90339-2. [DOI] [PubMed] [Google Scholar]
  33. Doskocil J., Fric I. Complex formation of daunomycin with double-stranded RNA. FEBS Lett. 1973 Nov 15;37(1):55–58. doi: 10.1016/0014-5793(73)80425-9. [DOI] [PubMed] [Google Scholar]
  34. Díaz M., Valverde M. A., Higgins C. F., Rucăreanu C., Sepúlveda F. V. Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 1993 Jan;422(4):347–353. doi: 10.1007/BF00374290. [DOI] [PubMed] [Google Scholar]
  35. Efferth T., Volm M. Reversal of doxorubicin-resistance in sarcoma 180 tumor cells by inhibition of different resistance mechanisms. Cancer Lett. 1993 Jul 16;70(3):197–202. doi: 10.1016/0304-3835(93)90231-w. [DOI] [PubMed] [Google Scholar]
  36. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  37. Epand R. F., Epand R. M., Gupta R. S., Cragoe E. J., Jr Reversal of intrinsic multidrug resistance in Chinese hamster ovary cells by amiloride analogs. Br J Cancer. 1991 Feb;63(2):247–251. doi: 10.1038/bjc.1991.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Escriba P. V., Ferrer-Montiel A. V., Ferragut J. A., Gonzalez-Ros J. M. Role of membrane lipids in the interaction of daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry. 1990 Aug 7;29(31):7275–7282. doi: 10.1021/bi00483a017. [DOI] [PubMed] [Google Scholar]
  39. Ferragut J. A., Gonzalez-Ros J. M., Ferrer-Montiel A. V., Escriba P. V. The surface charge of membranes modulates the interaction with the anthracycline daunomycin. Ann N Y Acad Sci. 1988;551:443–445. doi: 10.1111/j.1749-6632.1988.tb22376.x. [DOI] [PubMed] [Google Scholar]
  40. Ferretti A., Chen L. L., Di Vito M., Barca S., Tombesi M., Cianfriglia M., Bozzi A., Strom R., Podo F. Pentose phosphate pathway alterations in multi-drug resistant leukemic T-cells: 31P NMR and enzymatic studies. Anticancer Res. 1993 Jul-Aug;13(4):867–872. [PubMed] [Google Scholar]
  41. Fitz J. G., Lidofsky S. D., Xie M. H., Scharschmidt B. F. Transmembrane electrical potential difference regulates Na+/HCO3- cotransport and intracellular pH in hepatocytes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4197–4201. doi: 10.1073/pnas.89.9.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Fojo A., Akiyama S., Gottesman M. M., Pastan I. Reduced drug accumulation in multiply drug-resistant human KB carcinoma cell lines. Cancer Res. 1985 Jul;45(7):3002–3007. [PubMed] [Google Scholar]
  43. Friche E., Danks M. K., Schmidt C. A., Beck W. T. Decreased DNA topoisomerase II in daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res. 1991 Aug 15;51(16):4213–4218. [PubMed] [Google Scholar]
  44. Georges E., Tsuruo T., Ling V. Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J Biol Chem. 1993 Jan 25;268(3):1792–1798. [PubMed] [Google Scholar]
  45. Georges E., Zhang J. T., Ling V. Modulation of ATP and drug binding by monoclonal antibodies against P-glycoprotein. J Cell Physiol. 1991 Sep;148(3):479–484. doi: 10.1002/jcp.1041480321. [DOI] [PubMed] [Google Scholar]
  46. Gerlach J. H., Endicott J. A., Juranka P. F., Henderson G., Sarangi F., Deuchars K. L., Ling V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature. 1986 Dec 4;324(6096):485–489. doi: 10.1038/324485a0. [DOI] [PubMed] [Google Scholar]
  47. Gill D. R., Hyde S. C., Higgins C. F., Valverde M. A., Mintenig G. M., Sepúlveda F. V. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell. 1992 Oct 2;71(1):23–32. doi: 10.1016/0092-8674(92)90263-c. [DOI] [PubMed] [Google Scholar]
  48. Gollapudi S., Gupta S. Lack of reversal of daunorubicin resistance in HL60/AR cells by cyclosporin A. Anticancer Res. 1992 Nov-Dec;12(6B):2127–2132. [PubMed] [Google Scholar]
  49. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  50. Gray L., Mackman N., Nicaud J. M., Holland I. B. The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli. Mol Gen Genet. 1986 Oct;205(1):127–133. doi: 10.1007/BF02428042. [DOI] [PubMed] [Google Scholar]
  51. Gros P., Ben Neriah Y. B., Croop J. M., Housman D. E. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986 Oct 23;323(6090):728–731. doi: 10.1038/323728a0. [DOI] [PubMed] [Google Scholar]
  52. Gros P., Croop J., Housman D. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986 Nov 7;47(3):371–380. doi: 10.1016/0092-8674(86)90594-5. [DOI] [PubMed] [Google Scholar]
  53. Gros P., Dhir R., Croop J., Talbot F. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7289–7293. doi: 10.1073/pnas.88.16.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gudkov A. V., Zelnick C. R., Kazarov A. R., Thimmapaya R., Suttle D. P., Beck W. T., Roninson I. B. Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3231–3235. doi: 10.1073/pnas.90.8.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Harris A. L., Hochhauser D. Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 1992;31(2):205–213. doi: 10.3109/02841869209088904. [DOI] [PubMed] [Google Scholar]
  56. Hasmann M., Valet G. K., Tapiero H., Trevorrow K., Lampidis T. Membrane potential differences between adriamycin-sensitive and -resistant cells as measured by flow cytometry. Biochem Pharmacol. 1989 Jan 15;38(2):305–312. doi: 10.1016/0006-2952(89)90041-5. [DOI] [PubMed] [Google Scholar]
  57. Higgins C. F., Gottesman M. M. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992 Jan;17(1):18–21. doi: 10.1016/0968-0004(92)90419-a. [DOI] [PubMed] [Google Scholar]
  58. Horio M., Gottesman M. M., Pastan I. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3580–3584. doi: 10.1073/pnas.85.10.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Jaffrézou J. P., Levade T., Chatelain P., Laurent G. Modulation of subcellular distribution of doxorubicin in multidrug-resistant P388/ADR mouse leukemia cells by the chemosensitizer ((2-isopropyl-1-(4-[3-N-methyl-N-(3,4-dimethoxy-beta- phenethyl)amino]propyloxy)-benzenesulfonyl))indolizine. Cancer Res. 1992 Dec 1;52(23):6440–6446. [PubMed] [Google Scholar]
  60. Jirsch J., Deeley R. G., Cole S. P., Stewart A. J., Fedida D. Inwardly rectifying K+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells. Cancer Res. 1993 Sep 15;53(18):4156–4160. [PubMed] [Google Scholar]
  61. Kajiji S., Talbot F., Grizzuti K., Van Dyke-Phillips V., Agresti M., Safa A. R., Gros P. Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site. Biochemistry. 1993 Apr 27;32(16):4185–4194. doi: 10.1021/bi00067a005. [DOI] [PubMed] [Google Scholar]
  62. Keizer H. G., Joenje H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. J Natl Cancer Inst. 1989 May 3;81(9):706–709. doi: 10.1093/jnci/81.9.706. [DOI] [PubMed] [Google Scholar]
  63. Keizer H. G., van Rijn J., Pinedo H. M., Joenje H. Effect of endogenous glutathione, superoxide dismutases, catalase, and glutathione peroxidase on adriamycin tolerance of Chinese hamster ovary cells. Cancer Res. 1988 Aug 15;48(16):4493–4497. [PubMed] [Google Scholar]
  64. Koronakis V., Koronakis E., Hughes C. Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J. 1989 Feb;8(2):595–605. doi: 10.1002/j.1460-2075.1989.tb03414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kuchler K., Sterne R. E., Thorner J. Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. EMBO J. 1989 Dec 20;8(13):3973–3984. doi: 10.1002/j.1460-2075.1989.tb08580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Lelong I. H., Guzikowski A. P., Haugland R. P., Pastan I., Gottesman M. M., Willingham M. C. Fluorescent verapamil derivative for monitoring activity of the multidrug transporter. Mol Pharmacol. 1991 Oct;40(4):490–494. [PubMed] [Google Scholar]
  67. Ling V., Carlsen S. A., See Y. P. Altered drug permeability in mammalian cell mutants. Adv Exp Med Biol. 1977;84:247–264. doi: 10.1007/978-1-4684-3279-4_12. [DOI] [PubMed] [Google Scholar]
  68. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  69. Lingappa V. R., Shields D., Woo S. L., Blobel G. Nascent chicken ovalbumin contains the functional equivalent of a signal sequence. J Cell Biol. 1978 Nov;79(2 Pt 1):567–572. doi: 10.1083/jcb.79.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Ma L., Center M. S. The gene encoding vacuolar H(+)-ATPase subunit C is overexpressed in multidrug-resistant HL60 cells. Biochem Biophys Res Commun. 1992 Jan 31;182(2):675–681. doi: 10.1016/0006-291x(92)91785-o. [DOI] [PubMed] [Google Scholar]
  71. Mackman N., Baker K., Gray L., Haigh R., Nicaud J. M., Holland I. B. Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J. 1987 Sep;6(9):2835–2841. doi: 10.1002/j.1460-2075.1987.tb02580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Mayer L. D., Bally M. B., Cullis P. R. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta. 1986 May 9;857(1):123–126. doi: 10.1016/0005-2736(86)90105-7. [DOI] [PubMed] [Google Scholar]
  73. Mayer L. D., Tai L. C., Bally M. B., Mitilenes G. N., Ginsberg R. S., Cullis P. R. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta. 1990 Jun 27;1025(2):143–151. doi: 10.1016/0005-2736(90)90091-2. [DOI] [PubMed] [Google Scholar]
  74. McGrath J. P., Varshavsky A. The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature. 1989 Aug 3;340(6232):400–404. doi: 10.1038/340400a0. [DOI] [PubMed] [Google Scholar]
  75. Mechetner E. B., Roninson I. B. Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5824–5828. doi: 10.1073/pnas.89.13.5824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Na C., Timasheff S. N. Physical-chemical study of daunomycin-tubulin interactions. Arch Biochem Biophys. 1977 Jul;182(1):147–154. doi: 10.1016/0003-9861(77)90293-4. [DOI] [PubMed] [Google Scholar]
  77. Owellen R. J., Donigian D. W., Hartke C. A., Hains F. O. Correlation of biologic data with physico-chemical properties among the vinca alkaloids and their congeners. Biochem Pharmacol. 1977 Jul 1;26(13):1213–1219. doi: 10.1016/0006-2952(77)90108-3. [DOI] [PubMed] [Google Scholar]
  78. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  79. Ramu A., Pollard H. B., Rosario L. M. Doxorubicin resistance in P388 leukemia--evidence for reduced drug influx. Int J Cancer. 1989 Sep 15;44(3):539–547. doi: 10.1002/ijc.2910440328. [DOI] [PubMed] [Google Scholar]
  80. Raymond M., Gros P., Whiteway M., Thomas D. Y. Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Science. 1992 Apr 10;256(5054):232–234. doi: 10.1126/science.1348873. [DOI] [PubMed] [Google Scholar]
  81. Ripple M., Mulcahy R. T., Wilding G. Characteristics of the glutathione/glutathione-S-transferase detoxification system in melphalan resistant human prostate cancer cells. J Urol. 1993 Jul;150(1):209–214. doi: 10.1016/s0022-5347(17)35448-4. [DOI] [PubMed] [Google Scholar]
  82. Rittmann-Grauer L. S., Yong M. A., Sanders V., Mackensen D. G. Reversal of Vinca alkaloid resistance by anti-P-glycoprotein monoclonal antibody HYB-241 in a human tumor xenograft. Cancer Res. 1992 Apr 1;52(7):1810–1816. [PubMed] [Google Scholar]
  83. Roepe P. D. Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrug-resistant cells expressing different levels of P-glycoprotein. Biochemistry. 1992 Dec 22;31(50):12555–12564. doi: 10.1021/bi00165a003. [DOI] [PubMed] [Google Scholar]
  84. Rogers K. E., Carr B. I., Tökés Z. A. Cell surface-mediated cytotoxicity of polymer-bound Adriamycin against drug-resistant hepatocytes. Cancer Res. 1983 Jun;43(6):2741–2748. [PubMed] [Google Scholar]
  85. Rogers K. E., Tökés Z. A. Novel mode of cytotoxicity obtained by coupling inactive anthracycline to a polymer. Biochem Pharmacol. 1984 Feb 15;33(4):605–608. doi: 10.1016/0006-2952(84)90315-0. [DOI] [PubMed] [Google Scholar]
  86. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  87. Ross D., Siegel D., Beall H., Prakash A. S., Mulcahy R. T., Gibson N. W. DT-diaphorase in activation and detoxification of quinones. Bioreductive activation of mitomycin C. Cancer Metastasis Rev. 1993 Jun;12(2):83–101. doi: 10.1007/BF00689803. [DOI] [PubMed] [Google Scholar]
  88. Rubartelli A., Bajetto A., Allavena G., Wollman E., Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem. 1992 Dec 5;267(34):24161–24164. [PubMed] [Google Scholar]
  89. Rubartelli A., Cozzolino F., Talio M., Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J. 1990 May;9(5):1503–1510. doi: 10.1002/j.1460-2075.1990.tb08268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Rutherford A. V., Willingham M. C. Ultrastructural localization of daunomycin in multidrug-resistant cultured cells with modulation of the multidrug transporter. J Histochem Cytochem. 1993 Oct;41(10):1573–1577. doi: 10.1177/41.10.7902372. [DOI] [PubMed] [Google Scholar]
  91. Sarkaria J. N., Gibson D. F., Jordan V. C., Fowler J. F., Lindstrom M. J., Mulcahy R. T. Tamoxifen-induced increase in the potential doubling time of MCF-7 xenografts as determined by bromodeoxyuridine labeling and flow cytometry. Cancer Res. 1993 Sep 15;53(18):4413–4417. [PubMed] [Google Scholar]
  92. Sartorelli A. C. Therapeutic attack of hypoxic cells of solid tumors: presidential address. Cancer Res. 1988 Feb 15;48(4):775–778. [PubMed] [Google Scholar]
  93. Scheper R. J., Broxterman H. J., Scheffer G. L., Kaaijk P., Dalton W. S., van Heijningen T. H., van Kalken C. K., Slovak M. L., de Vries E. G., van der Valk P. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 1993 Apr 1;53(7):1475–1479. [PubMed] [Google Scholar]
  94. Schuurhuis G. J., van Heijningen T. H., Cervantes A., Pinedo H. M., de Lange J. H., Keizer H. G., Broxterman H. J., Baak J. P., Lankelma J. Changes in subcellular doxorubicin distribution and cellular accumulation alone can largely account for doxorubicin resistance in SW-1573 lung cancer and MCF-7 breast cancer multidrug resistant tumour cells. Br J Cancer. 1993 Nov;68(5):898–908. doi: 10.1038/bjc.1993.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Sehested M., Skovsgaard T., van Deurs B., Winther-Nielsen H. Increase in nonspecific adsorptive endocytosis in anthracycline- and vinca alkaloid-resistant Ehrlich ascites tumor cell lines. J Natl Cancer Inst. 1987 Jan;78(1):171–179. doi: 10.1093/jnci/78.1.171. [DOI] [PubMed] [Google Scholar]
  96. Sehested M., Skovsgaard T., van Deurs B., Winther-Nielsen H. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil. Br J Cancer. 1987 Dec;56(6):747–751. doi: 10.1038/bjc.1987.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Sharma R. C., Inoue S., Roitelman J., Schimke R. T., Simoni R. D. Peptide transport by the multidrug resistance pump. J Biol Chem. 1992 Mar 25;267(9):5731–5734. [PubMed] [Google Scholar]
  98. Sharom F. J., Yu X., Doige C. A. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem. 1993 Nov 15;268(32):24197–24202. [PubMed] [Google Scholar]
  99. Siebens A. W., Boron W. F. Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Na+. Am J Physiol. 1989 Feb;256(2 Pt 2):F342–F353. doi: 10.1152/ajprenal.1989.256.2.F342. [DOI] [PubMed] [Google Scholar]
  100. Siebens A. W., Boron W. F. Depolarization-induced alkalinization in proximal tubules. II. Effects of lactate and SITS. Am J Physiol. 1989 Feb;256(2 Pt 2):F354–F365. doi: 10.1152/ajprenal.1989.256.2.F354. [DOI] [PubMed] [Google Scholar]
  101. Siegfried J. M., Burke T. G., Tritton T. R. Cellular transport of anthracyclines by passive diffusion. Implications for drug resistance. Biochem Pharmacol. 1985 Mar 1;34(5):593–598. doi: 10.1016/0006-2952(85)90251-5. [DOI] [PubMed] [Google Scholar]
  102. Simon S. M., Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell. 1991 May 3;65(3):371–380. doi: 10.1016/0092-8674(91)90455-8. [DOI] [PubMed] [Google Scholar]
  103. Simon S. M., Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell. 1992 May 15;69(4):677–684. doi: 10.1016/0092-8674(92)90231-z. [DOI] [PubMed] [Google Scholar]
  104. Simon S. M., Peskin C. S., Oster G. F. What drives the translocation of proteins? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3770–3774. doi: 10.1073/pnas.89.9.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Simon S., Roy D., Schindler M. Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1128–1132. doi: 10.1073/pnas.91.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  107. Sirotnak F. M., Yang C. H., Mines L. S., Oribé E., Biedler J. L. Markedly altered membrane transport and intracellular binding of vincristine in multidrug-resistant Chinese hamster cells selected for resistance to vinca alkaloids. J Cell Physiol. 1986 Feb;126(2):266–274. doi: 10.1002/jcp.1041260217. [DOI] [PubMed] [Google Scholar]
  108. Skovsgaard T. Mechanisms of resistance to daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 1978 Jun;38(6):1785–1791. [PubMed] [Google Scholar]
  109. Skovsgaard T. Transport and binding of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells. Biochem Pharmacol. 1977 Feb 1;26(3):215–222. doi: 10.1016/0006-2952(77)90306-9. [DOI] [PubMed] [Google Scholar]
  110. Slovak M. L., Ho J. P., Bhardwaj G., Kurz E. U., Deeley R. G., Cole S. P. Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines. Cancer Res. 1993 Jul 15;53(14):3221–3225. [PubMed] [Google Scholar]
  111. Stow M. W., Warr J. R. Reduced influx is a factor in accounting for reduced vincristine accumulation in certain verapamil-hypersensitive multidrug-resistant CHO cell lines. FEBS Lett. 1993 Apr 5;320(2):87–91. doi: 10.1016/0014-5793(93)80068-6. [DOI] [PubMed] [Google Scholar]
  112. Sutherland R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8;240(4849):177–184. doi: 10.1126/science.2451290. [DOI] [PubMed] [Google Scholar]
  113. Thiebaut F., Currier S. J., Whitaker J., Haugland R. P., Gottesman M. M., Pastan I., Willingham M. C. Activity of the multidrug transporter results in alkalinization of the cytosol: measurement of cytosolic pH by microinjection of a pH-sensitive dye. J Histochem Cytochem. 1990 May;38(5):685–690. doi: 10.1177/38.5.1692055. [DOI] [PubMed] [Google Scholar]
  114. Tokes Z. A., Rogers K. E., Rembaum A. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2026–2030. doi: 10.1073/pnas.79.6.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Trezise A. E., Romano P. R., Gill D. R., Hyde S. C., Sepúlveda F. V., Buchwald M., Higgins C. F. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J. 1992 Dec;11(12):4291–4303. doi: 10.1002/j.1460-2075.1992.tb05528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Triton T. R., Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982 Jul 16;217(4556):248–250. doi: 10.1126/science.7089561. [DOI] [PubMed] [Google Scholar]
  117. Ueda K., Cardarelli C., Gottesman M. M., Pastan I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 1987 May;84(9):3004–3008. doi: 10.1073/pnas.84.9.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Valverde M. A., Díaz M., Sepúlveda F. V., Gill D. R., Hyde S. C., Higgins C. F. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature. 1992 Feb 27;355(6363):830–833. doi: 10.1038/355830a0. [DOI] [PubMed] [Google Scholar]
  119. Vamecq J., Vallée L., Fontaine M., Nuyts J. P., Lambert D., Poupaert J. Preliminary studies about novel strategies to reverse chemoresistance to adriamycin regarding glutathione metabolism, peroxisomal and extraperoxisomal hydroperoxide and valproic acid metabolic pathways. Biol Cell. 1993;77(1):17–26. doi: 10.1016/s0248-4900(05)80170-4. [DOI] [PubMed] [Google Scholar]
  120. Versantvoort C. H., Broxterman H. J., Pinedo H. M., de Vries E. G., Feller N., Kuiper C. M., Lankelma J. Energy-dependent processes involved in reduced drug accumulation in multidrug-resistant human lung cancer cell lines without P-glycoprotein expression. Cancer Res. 1992 Jan 1;52(1):17–23. [PubMed] [Google Scholar]
  121. WARBURG O. On the origin of cancer cells. Science. 1956 Feb 24;123(3191):309–314. doi: 10.1126/science.123.3191.309. [DOI] [PubMed] [Google Scholar]
  122. Warren L., Jardillier J. C., Ordentlich P. Secretion of lysosomal enzymes by drug-sensitive and multiple drug-resistant cells. Cancer Res. 1991 Apr 15;51(8):1996–2001. [PubMed] [Google Scholar]
  123. Weaver J. L., Pine P. S., Aszalos A., Schoenlein P. V., Currier S. J., Padmanabhan R., Gottesman M. M. Laser scanning and confocal microscopy of daunorubicin, doxorubicin, and rhodamine 123 in multidrug-resistant cells. Exp Cell Res. 1991 Oct;196(2):323–329. doi: 10.1016/0014-4827(91)90267-x. [DOI] [PubMed] [Google Scholar]
  124. Weisenberg R. C., Timasheff S. N. Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry. 1970 Oct 13;9(21):4110–4116. doi: 10.1021/bi00823a012. [DOI] [PubMed] [Google Scholar]
  125. West I. C. What determines the substrate specificity of the multi-drug-resistance pump? Trends Biochem Sci. 1990 Feb;15(2):42–46. doi: 10.1016/0968-0004(90)90171-7. [DOI] [PubMed] [Google Scholar]
  126. Whelan R. D., Waring C. J., Wolf C. R., Hayes J. D., Hosking L. K., Hill B. T. Over-expression of P-glycoprotein and glutathione S-transferase pi in MCF-7 cells selected for vincristine resistance in vitro. Int J Cancer. 1992 Sep 9;52(2):241–246. doi: 10.1002/ijc.2910520215. [DOI] [PubMed] [Google Scholar]
  127. Willingham M. C., Cornwell M. M., Cardarelli C. O., Gottesman M. M., Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res. 1986 Nov;46(11):5941–5946. [PubMed] [Google Scholar]
  128. Zamora J. M., Beck W. T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem Pharmacol. 1986 Dec 1;35(23):4303–4310. doi: 10.1016/0006-2952(86)90710-0. [DOI] [PubMed] [Google Scholar]
  129. Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]
  130. Zunino F., Di Marco A., Zaccara A. Molecular structural effects involved in the interaction of anthracyclines with DNA. Chem Biol Interact. 1979 Feb;24(2):217–225. doi: 10.1016/0009-2797(79)90010-3. [DOI] [PubMed] [Google Scholar]
  131. Zunino F., Gambetta R., Di Marco A., Velcich A., Zaccara A., Quadrifoglio F., Crescenzi V. The interaction of adriamycin and its beta anomer with DNA. Biochim Biophys Acta. 1977 May 3;476(1):38–46. doi: 10.1016/0005-2787(77)90283-0. [DOI] [PubMed] [Google Scholar]
  132. Zunino F., Gambetta R., Di Marco A., Zaccara A. Interaction of daunomycin and its derivatives with DNA. Biochim Biophys Acta. 1972 Sep 14;277(3):489–498. doi: 10.1016/0005-2787(72)90092-5. [DOI] [PubMed] [Google Scholar]
  133. de Lange J. H., Schipper N. W., Schuurhuis G. J., ten Kate T. K., van Heijningen T. H., Pinedo H. M., Lankelma J., Baak J. P. Quantification by laser scan microscopy of intracellular doxorubicin distribution. Cytometry. 1992;13(6):571–576. doi: 10.1002/cyto.990130604. [DOI] [PubMed] [Google Scholar]
  134. de la Torre M., Hao X. Y., Larsson R., Nygren P., Tsuruo T., Mannervik B., Bergh J. Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases. Anticancer Res. 1993 Sep-Oct;13(5A):1425–1430. [PubMed] [Google Scholar]
  135. van Adelsberg J., Al-Awqati Q. Regulation of cell pH by Ca+2-mediated exocytotic insertion of H+-ATPases. J Cell Biol. 1986 May;102(5):1638–1645. doi: 10.1083/jcb.102.5.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]