Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a (original) (raw)
Abstract
Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its role is lacking. In this report, we demonstrate that constitutive high-level expression of PR-1a in transgenic tobacco results in tolerance to infection by two oomycete pathogens, Peronospora tabacina and Phytophthora parasitica var. nicotianae.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
- Alexander D., Stinson J., Pear J., Glascock C., Ward E., Goodman R. M., Ryals J. A new multigene family inducible by tobacco mosaic virus or salicylic acid in tobacco. Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):513–515. doi: 10.1094/mpmi-5-513. [DOI] [PubMed] [Google Scholar]
- Brogue K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C. J., Broglie R. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991 Nov 22;254(5035):1194–1197. doi: 10.1126/science.254.5035.1194. [DOI] [PubMed] [Google Scholar]
- Comai L., Moran P., Maslyar D. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol. 1990 Sep;15(3):373–381. doi: 10.1007/BF00019155. [DOI] [PubMed] [Google Scholar]
- Cutt J. R., Harpster M. H., Dixon D. C., Carr J. P., Dunsmuir P., Klessig D. F. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology. 1989 Nov;173(1):89–97. doi: 10.1016/0042-6822(89)90224-9. [DOI] [PubMed] [Google Scholar]
- Hood E. E., Helmer G. L., Fraley R. T., Chilton M. D. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol. 1986 Dec;168(3):1291–1301. doi: 10.1128/jb.168.3.1291-1301.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen N. T. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. doi: 10.1146/annurev.ge.24.120190.002311. [DOI] [PubMed] [Google Scholar]
- Lawton K., Ward E., Payne G., Moyer M., Ryals J. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol. 1992 Aug;19(5):735–743. doi: 10.1007/BF00027070. [DOI] [PubMed] [Google Scholar]
- Linthorst H. J., Meuwissen R. L., Kauffmann S., Bol J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell. 1989 Mar;1(3):285–291. doi: 10.1105/tpc.1.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBride K. E., Summerfelt K. R. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol. 1990 Feb;14(2):269–276. doi: 10.1007/BF00018567. [DOI] [PubMed] [Google Scholar]
- Metraux J. P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M., Ryals J. Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci U S A. 1989 Feb;86(3):896–900. doi: 10.1073/pnas.86.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuhaus J. M., Sticher L., Meins F., Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366. doi: 10.1073/pnas.88.22.10362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne G., Ahl P., Moyer M., Harper A., Beck J., Meins F., Jr, Ryals J. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Proc Natl Acad Sci U S A. 1990 Jan;87(1):98–102. doi: 10.1073/pnas.87.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne G., Ward E., Gaffney T., Goy P. A., Moyer M., Harper A., Meins F., Jr, Ryals J. Evidence for a third structural class of beta-1,3-glucanase in tobacco. Plant Mol Biol. 1990 Dec;15(6):797–808. doi: 10.1007/BF00039420. [DOI] [PubMed] [Google Scholar]
- ROSS A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. doi: 10.1016/0042-6822(61)90319-1. [DOI] [PubMed] [Google Scholar]
- Sequeira L. Mechanisms of induced resistance in plants. Annu Rev Microbiol. 1983;37:51–79. doi: 10.1146/annurev.mi.37.100183.000411. [DOI] [PubMed] [Google Scholar]
- Shinshi H., Mohnen D., Meins F. Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987 Jan;84(1):89–93. doi: 10.1073/pnas.84.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinshi H., Wenzler H., Neuhaus J. M., Felix G., Hofsteenge J., Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. doi: 10.1073/pnas.85.15.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigers A. J., Roberts W. K., Selitrennikoff C. P. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. doi: 10.1094/mpmi-4-315. [DOI] [PubMed] [Google Scholar]
- Ward E. R., Payne G. B., Moyer M. B., Williams S. C., Dincher S. S., Sharkey K. C., Beck J. J., Taylor H. T., Ahl-Goy P., Meins F. Differential Regulation of beta-1,3-Glucanase Messenger RNAs in Response to Pathogen Infection. Plant Physiol. 1991 Jun;96(2):390–397. doi: 10.1104/pp.96.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. doi: 10.1128/jb.123.1.255-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woloshuk C. P., Meulenhoff J. S., Sela-Buurlage M., van den Elzen P. J., Cornelissen B. J. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell. 1991 Jun;3(6):619–628. doi: 10.1105/tpc.3.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]