Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model (original) (raw)

Abstract

We examined the effect of ventilation strategy on lung inflammatory mediators in the presence and absence of a preexisting inflammatory stimulus. 55 Sprague-Dawley rats were randomized to either intravenous saline or lipopolysaccharide (LPS). After 50 min of spontaneous respiration, the lungs were excised and randomized to 2 h of ventilation with one of four strategies: (a) control (C), tidal volume (Vt) = 7 cc/kg, positive end expiratory pressure (PEEP) = 3 cm H2O; (b) moderate volume, high PEEP (MVHP), Vt = 15 cc/kg; PEEP = 10 cm H2O; (c) moderate volume, zero PEEP (MVZP), Vt = 15 cc/kg, PEEP = 0; or (d) high volume, zero PEEP (HVZP), Vt = 40 cc/kg, PEEP = 0. Ventilation with zero PEEP (MVZP, HVZP) resulted in significant reductions in lung compliance. Lung lavage levels of TNFalpha, IL-1beta, IL-6, IL-10, MIP-2, and IFNgamma were measured by ELISA. Zero PEEP in combination with high volume ventilation (HVZP) had a synergistic effect on cytokine levels (e.g., 56-fold increase of TNFalpha versus controls). Identical end inspiratory lung distention with PEEP (MVHP) resulted in only a three-fold increase in TNFalpha, whereas MVZP produced a six-fold increase in lavage TNFalpha. Northern blot analysis revealed a similar pattern (C, MVHP < MVZP < HVZP) for induction of c-fos mRNA. These data support the concept that mechanical ventilation can have a significant influence on the inflammatory/anti-inflammatory milieu of the lung, and thus may play a role in initiating or propagating a local, and possibly systemic inflammatory response.

Full Text

The Full Text of this article is available as a PDF (324.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E., Coulson W. F., Schwartz M. D., Allbee J. Effects of therapy with soluble tumour necrosis factor receptor fusion protein on pulmonary cytokine expression and lung injury following haemorrhage and resuscitation. Clin Exp Immunol. 1994 Oct;98(1):29–34. doi: 10.1111/j.1365-2249.1994.tb06602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alessandrini F., D'Armini A. M., Roberts C. S., Reddick R. L., Egan T. M. When does the lung die? II. Ultrastructural evidence of pulmonary viability after "death". J Heart Lung Transplant. 1994 Sep-Oct;13(5):748–757. [PubMed] [Google Scholar]
  3. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  4. Ardekarni R. G., Faber L. P., Beattie E. J., Jr Pulmonary function after various periods of ischemia in the canine lung. J Thorac Cardiovasc Surg. 1970 May;59(5):607–612. [PubMed] [Google Scholar]
  5. Arias-Díaz J., Vara E., García C., Gómez M., Balibrea J. L. Tumour necrosis factor-alpha inhibits synthesis of surfactant by isolated human type II pneumocytes. Eur J Surg. 1993 Oct;159(10):541–549. [PubMed] [Google Scholar]
  6. Bachurski C. J., Pryhuber G. S., Glasser S. W., Kelly S. E., Whitsett J. A. Tumor necrosis factor-alpha inhibits surfactant protein C gene transcription. J Biol Chem. 1995 Aug 18;270(33):19402–19407. doi: 10.1074/jbc.270.33.19402. [DOI] [PubMed] [Google Scholar]
  7. Bendtzen K. Cytokines and natural regulators of cytokines. Immunol Lett. 1994 Dec;43(1-2):111–123. doi: 10.1016/0165-2478(94)00153-7. [DOI] [PubMed] [Google Scholar]
  8. Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
  9. Bezzant T. B., Mortensen J. D. Risks and hazards of mechanical ventilation: a collective review of published literature. Dis Mon. 1994 Nov;40(11):581–638. doi: 10.1016/0011-5029(94)90011-6. [DOI] [PubMed] [Google Scholar]
  10. Chernoff A. E., Granowitz E. V., Shapiro L., Vannier E., Lonnemann G., Angel J. B., Kennedy J. S., Rabson A. R., Wolff S. M., Dinarello C. A. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol. 1995 May 15;154(10):5492–5499. [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Crestani B., Cornillet P., Dehoux M., Rolland C., Guenounou M., Aubier M. Alveolar type II epithelial cells produce interleukin-6 in vitro and in vivo. Regulation by alveolar macrophage secretory products. J Clin Invest. 1994 Aug;94(2):731–740. doi: 10.1172/JCI117392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Debs R. J., Fuchs H. J., Philip R., Montgomery A. B., Brunette E. N., Liggitt D., Patton J. S., Shellito J. E. Lung-specific delivery of cytokines induces sustained pulmonary and systemic immunomodulation in rats. J Immunol. 1988 May 15;140(10):3482–3488. [PubMed] [Google Scholar]
  14. Donnelly S. C., Haslett C. Cellular mechanisms of acute lung injury: implications for future treatment in the adult respiratory distress syndrome. Thorax. 1992 Apr;47(4):260–263. doi: 10.1136/thx.47.4.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dreyfuss D., Soler P., Basset G., Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988 May;137(5):1159–1164. doi: 10.1164/ajrccm/137.5.1159. [DOI] [PubMed] [Google Scholar]
  16. Dreyfuss D., Soler P., Saumon G. Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med. 1995 May;151(5):1568–1575. doi: 10.1164/ajrccm.151.5.7735616. [DOI] [PubMed] [Google Scholar]
  17. Driscoll K. E. Macrophage inflammatory proteins: biology and role in pulmonary inflammation. Exp Lung Res. 1994 Nov-Dec;20(6):473–490. doi: 10.3109/01902149409031733. [DOI] [PubMed] [Google Scholar]
  18. Elias J. A., Freundlich B., Kern J. A., Rosenbloom J. Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest. 1990 Jun;97(6):1439–1445. doi: 10.1378/chest.97.6.1439. [DOI] [PubMed] [Google Scholar]
  19. Gattinoni L., Pesenti A., Baglioni S., Vitale G., Rivolta M., Pelosi P. Inflammatory pulmonary edema and positive end-expiratory pressure: correlations between imaging and physiologic studies. J Thorac Imaging. 1988 Jul;3(3):59–64. doi: 10.1097/00005382-198807000-00013. [DOI] [PubMed] [Google Scholar]
  20. Gattinoni L., Presenti A., Torresin A., Baglioni S., Rivolta M., Rossi F., Scarani F., Marcolin R., Cappelletti G. Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imaging. 1986 Jul;1(3):25–30. doi: 10.1097/00005382-198607000-00005. [DOI] [PubMed] [Google Scholar]
  21. Geertsma M. F., Teeuw W. L., Nibbering P. H., van Furth R. Pulmonary surfactant inhibits activation of human monocytes by recombinant interferon-gamma. Immunology. 1994 Jul;82(3):450–456. [PMC free article] [PubMed] [Google Scholar]
  22. Homatas J., Bryant L., Eiseman B. Time limits of cadaver lung viability. J Thorac Cardiovasc Surg. 1968 Jul;56(1):132–140. [PubMed] [Google Scholar]
  23. Imai Y., Kawano T., Miyasaka K., Takata M., Imai T., Okuyama K. Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 1):1550–1554. doi: 10.1164/ajrccm.150.6.7952613. [DOI] [PubMed] [Google Scholar]
  24. Kawano T., Mori S., Cybulsky M., Burger R., Ballin A., Cutz E., Bryan A. C. Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol (1985) 1987 Jan;62(1):27–33. doi: 10.1152/jappl.1987.62.1.27. [DOI] [PubMed] [Google Scholar]
  25. Kelley J. Cytokines of the lung. Am Rev Respir Dis. 1990 Mar;141(3):765–788. doi: 10.1164/ajrccm/141.3.765. [DOI] [PubMed] [Google Scholar]
  26. Klampfer L., Lee T. H., Hsu W., Vilcek J., Chen-Kiang S. NF-IL6 and AP-1 cooperatively modulate the activation of the TSG-6 gene by tumor necrosis factor alpha and interleukin-1. Mol Cell Biol. 1994 Oct;14(10):6561–6569. doi: 10.1128/mcb.14.10.6561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Komuro I., Kaida T., Shibazaki Y., Kurabayashi M., Katoh Y., Hoh E., Takaku F., Yazaki Y. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem. 1990 Mar 5;265(7):3595–3598. [PubMed] [Google Scholar]
  28. Laskin D. L., Soltys R. A., Berg R. A., Riley D. J. Activation of alveolar macrophages by native and synthetic collagen-like polypeptides. Am J Respir Cell Mol Biol. 1994 Jan;10(1):58–64. doi: 10.1165/ajrcmb.10.1.8292381. [DOI] [PubMed] [Google Scholar]
  29. Leff J. A., Bodman M. E., Cho O. J., Rohrbach S., Reiss O. K., Vannice J. L., Repine J. E. Post-insult treatment with interleukin-1 receptor antagonist decreases oxidative lung injury in rats given intratracheal interleukin-1. Am J Respir Crit Care Med. 1994 Jul;150(1):109–112. doi: 10.1164/ajrccm.150.1.8025734. [DOI] [PubMed] [Google Scholar]
  30. Li X. Y., Donaldson K., Brown D., MacNee W. The role of tumor necrosis factor in increased airspace epithelial permeability in acute lung inflammation. Am J Respir Cell Mol Biol. 1995 Aug;13(2):185–195. doi: 10.1165/ajrcmb.13.2.7626286. [DOI] [PubMed] [Google Scholar]
  31. Liu M., Xu J., Liu J., Kraw M. E., Tanswell A. K., Post M. Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Physiol. 1995 May;268(5 Pt 1):L729–L738. doi: 10.1152/ajplung.1995.268.5.L729. [DOI] [PubMed] [Google Scholar]
  32. Meduri G. U., Kohler G., Headley S., Tolley E., Stentz F., Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 1995 Nov;108(5):1303–1314. doi: 10.1378/chest.108.5.1303. [DOI] [PubMed] [Google Scholar]
  33. Miles P. R., Bowman L., Frazer D. G. Properties of lavage material from excised lungs ventilated at different temperatures. Respir Physiol. 1995 Jul;101(1):99–108. doi: 10.1016/0034-5687(95)00006-y. [DOI] [PubMed] [Google Scholar]
  34. Montgomery A. B., Stager M. A., Carrico C. J., Hudson L. D. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1985 Sep;132(3):485–489. doi: 10.1164/arrd.1985.132.3.485. [DOI] [PubMed] [Google Scholar]
  35. Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol. 1993;11:165–190. doi: 10.1146/annurev.iy.11.040193.001121. [DOI] [PubMed] [Google Scholar]
  36. Muscedere J. G., Mullen J. B., Gan K., Slutsky A. S. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994 May;149(5):1327–1334. doi: 10.1164/ajrccm.149.5.8173774. [DOI] [PubMed] [Google Scholar]
  37. Nash J. R., McLaughlin P. J., Hoyle C., Roberts D. Immunolocalization of tumour necrosis factor alpha in lung tissue from patients dying with adult respiratory distress syndrome. Histopathology. 1991 Nov;19(5):395–402. doi: 10.1111/j.1365-2559.1991.tb00228.x. [DOI] [PubMed] [Google Scholar]
  38. Nathan C. F. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest. 1987 Dec;80(6):1550–1560. doi: 10.1172/JCI113241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Parker J. C., Hernandez L. A., Peevy K. J. Mechanisms of ventilator-induced lung injury. Crit Care Med. 1993 Jan;21(1):131–143. doi: 10.1097/00003246-199301000-00024. [DOI] [PubMed] [Google Scholar]
  41. Pison U., Max M., Neuendank A., Weissbach S., Pietschmann S. Host defence capacities of pulmonary surfactant: evidence for 'non-surfactant' functions of the surfactant system. Eur J Clin Invest. 1994 Sep;24(9):586–599. doi: 10.1111/j.1365-2362.1994.tb01110.x. [DOI] [PubMed] [Google Scholar]
  42. Rannels D. E. Role of physical forces in compensatory growth of the lung. Am J Physiol. 1989 Oct;257(4 Pt 1):L179–L189. doi: 10.1152/ajplung.1989.257.4.L179. [DOI] [PubMed] [Google Scholar]
  43. Reid P. T., Donnelly S. C., Haslett C. Inflammatory predictors for the development of the adult respiratory distress syndrome. Thorax. 1995 Oct;50(10):1023–1026. doi: 10.1136/thx.50.10.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sachs F. Mechanical transduction by membrane ion channels: a mini review. 1991 May 29-Jun 12Mol Cell Biochem. 104(1-2):57–60. doi: 10.1007/BF00229804. [DOI] [PubMed] [Google Scholar]
  45. Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993 Apr;12(4):1681–1692. doi: 10.1002/j.1460-2075.1993.tb05813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sadoshima J., Jahn L., Takahashi T., Kulik T. J., Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992 May 25;267(15):10551–10560. [PubMed] [Google Scholar]
  47. Sadoshima J., Takahashi T., Jahn L., Izumo S. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9905–9909. doi: 10.1073/pnas.89.20.9905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Seibert A. F., Haynes J., Taylor A. Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes. Am Rev Respir Dis. 1993 Feb;147(2):270–275. doi: 10.1164/ajrccm/147.2.270. [DOI] [PubMed] [Google Scholar]
  49. Sekido N., Mukaida N., Harada A., Nakanishi I., Watanabe Y., Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993 Oct 14;365(6447):654–657. doi: 10.1038/365654a0. [DOI] [PubMed] [Google Scholar]
  50. Slutsky A. S. Consensus conference on mechanical ventilation--January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med. 1994;20(1):64–79. doi: 10.1007/BF02425061. [DOI] [PubMed] [Google Scholar]
  51. Sugiura M., McCulloch P. R., Wren S., Dawson R. H., Froese A. B. Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol (1985) 1994 Sep;77(3):1355–1365. doi: 10.1152/jappl.1994.77.3.1355. [DOI] [PubMed] [Google Scholar]
  52. Tran Van Nhieu J., Misset B., Lebargy F., Carlet J., Bernaudin J. F. Expression of tumor necrosis factor-alpha gene in alveolar macrophages from patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1585–1589. doi: 10.1164/ajrccm/147.6_Pt_1.1585. [DOI] [PubMed] [Google Scholar]
  53. Tutor J. D., Mason C. M., Dobard E., Beckerman R. C., Summer W. R., Nelson S. Loss of compartmentalization of alveolar tumor necrosis factor after lung injury. Am J Respir Crit Care Med. 1994 May;149(5):1107–1111. doi: 10.1164/ajrccm.149.5.8173748. [DOI] [PubMed] [Google Scholar]
  54. Vandenburgh H. H. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol. 1992 Mar;262(3 Pt 2):R350–R355. doi: 10.1152/ajpregu.1992.262.3.R350. [DOI] [PubMed] [Google Scholar]
  55. Vara E., Arias-Díaz J., García C., Hernández J., Balibrea J. L. Both prostaglandin E2 and nitric oxide sequentially mediate the tumor necrosis factor alpha-induced inhibition of surfactant synthesis by human type II pneumocytes. Arch Surg. 1995 Dec;130(12):1279–1286. doi: 10.1001/archsurg.1995.01430120033005. [DOI] [PubMed] [Google Scholar]
  56. Watson P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. doi: 10.1096/fasebj.5.7.1707019. [DOI] [PubMed] [Google Scholar]
  57. West J. B., Mathieu-Costello O. Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet. 1992 Sep 26;340(8822):762–767. doi: 10.1016/0140-6736(92)92301-u. [DOI] [PubMed] [Google Scholar]
  58. Wirtz H. R., Dobbs L. G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science. 1990 Nov 30;250(4985):1266–1269. doi: 10.1126/science.2173861. [DOI] [PubMed] [Google Scholar]
  59. Xing Z., Jordana M., Kirpalani H., Driscoll K. E., Schall T. J., Gauldie J. Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute lung inflammation. Am J Respir Cell Mol Biol. 1994 Feb;10(2):148–153. doi: 10.1165/ajrcmb.10.2.8110470. [DOI] [PubMed] [Google Scholar]