Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice (original) (raw)

Abstract

Previous studies of osteopetrotic (op) mice lacking macrophage colony-stimulating factor (M-CSF) have revealed an inhibition of atherosclerosis development in the apolipoprotein E (apo E)-deficient model and in a diet-induced model. Using LDL receptor-deficient mice, we now show that atheroma development depends on M-CSF concentration, as not only did homozygous osteopetrotic (op/op) mice have dramatically reduced lesions (approximately 0.3% of control lesion size) but heterozygous (op/+) mice had lesions < 1% of controls. Mice heterozygous for the op mutation (op/+) had plasma levels of M-CSF about half those in controls (+/+). The finding that an approximately 2-fold reduction in M-CSF expression reduced lesion size approximately 100-fold suggests the requirement for a threshold level of M-CSF. The effect of M-CSF on atherosclerosis did not appear to be mediated either by changes in plasma lipoprotein levels or alterations in the number of circulating monocytes, since both op/op and op/+ mice exhibited higher levels of atherogenic lipoprotein particles and (op/+) mice showed a near normal number of circulating monocytes. LDL receptor-null littermates of genotypes from op/op, op/+, to +/+ showed monocyte differentials of approximately 4.5, 8, and 10%, respectively. Taken together, these results suggest that the effects of M-CSF on atherogenesis may not be mediated by expression of M-CSF systemically or by modulation of the number of circulating monocytes. These studies support the conclusion that M-CSF participates critically in fatty streak formation and progression to a complex fibrous lesion.

Full Text

The Full Text of this article is available as a PDF (770.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berliner J. A., Navab M., Fogelman A. M., Frank J. S., Demer L. L., Edwards P. A., Watson A. D., Lusis A. J. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995 May 1;91(9):2488–2496. doi: 10.1161/01.cir.91.9.2488. [DOI] [PubMed] [Google Scholar]
  2. Breslow J. L. Mouse models of atherosclerosis. Science. 1996 May 3;272(5262):685–688. doi: 10.1126/science.272.5262.685. [DOI] [PubMed] [Google Scholar]
  3. Cerretti D. P., Wignall J., Anderson D., Tushinski R. J., Gallis B. M., Stya M., Gillis S., Urdal D. L., Cosman D. Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene. Mol Immunol. 1988 Aug;25(8):761–770. doi: 10.1016/0161-5890(88)90112-5. [DOI] [PubMed] [Google Scholar]
  4. Clinton S. K., Underwood R., Hayes L., Sherman M. L., Kufe D. W., Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992 Feb;140(2):301–316. [PMC free article] [PubMed] [Google Scholar]
  5. Gordon D., Reidy M. A., Benditt E. P., Schwartz S. M. Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4600–4604. doi: 10.1073/pnas.87.12.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inaba T., Yamada N., Gotoda T., Shimano H., Shimada M., Momomura K., Kadowaki T., Motoyoshi K., Tsukada T., Morisaki N. Expression of M-CSF receptor encoded by c-fms on smooth muscle cells derived from arteriosclerotic lesion. J Biol Chem. 1992 Mar 15;267(8):5693–5699. [PubMed] [Google Scholar]
  7. Ishibashi S., Goldstein J. L., Brown M. S., Herz J., Burns D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994 May;93(5):1885–1893. doi: 10.1172/JCI117179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishibashi S., Inaba T., Shimano H., Harada K., Inoue I., Mokuno H., Mori N., Gotoda T., Takaku F., Yamada N. Monocyte colony-stimulating factor enhances uptake and degradation of acetylated low density lipoproteins and cholesterol esterification in human monocyte-derived macrophages. J Biol Chem. 1990 Aug 25;265(24):14109–14117. [PubMed] [Google Scholar]
  9. Kawasaki E. S., Ladner M. B., Wang A. M., Van Arsdell J., Warren M. K., Coyne M. Y., Schweickart V. L., Lee M. T., Wilson K. J., Boosman A. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science. 1985 Oct 18;230(4723):291–296. doi: 10.1126/science.2996129. [DOI] [PubMed] [Google Scholar]
  10. Kodama H., Yamasaki A., Nose M., Niida S., Ohgame Y., Abe M., Kumegawa M., Suda T. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med. 1991 Jan 1;173(1):269–272. doi: 10.1084/jem.173.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ladner M. B., Martin G. A., Noble J. A., Nikoloff D. M., Tal R., Kawasaki E. S., White T. J. Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J. 1987 Sep;6(9):2693–2698. doi: 10.1002/j.1460-2075.1987.tb02561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liao F., Andalibi A., Qiao J. H., Allayee H., Fogelman A. M., Lusis A. J. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest. 1994 Aug;94(2):877–884. doi: 10.1172/JCI117409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marks S. C., Jr, Lane P. W. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered. 1976 Jan-Feb;67(1):11–18. doi: 10.1093/oxfordjournals.jhered.a108657. [DOI] [PubMed] [Google Scholar]
  14. Mori N., Gotoda T., Ishibashi S., Shimano H., Harada K., Inaba T., Takaku F., Yazaki Y., Yamada N. Effects of human recombinant macrophage colony-stimulating factor on the secretion of lipoprotein lipase from macrophages. Arterioscler Thromb. 1991 Sep-Oct;11(5):1315–1321. doi: 10.1161/01.atv.11.5.1315. [DOI] [PubMed] [Google Scholar]
  15. Motoyoshi K., Takaku F. Serum cholesterol-lowering activity of human monocytic colony-stimulating factor. Lancet. 1989 Aug 5;2(8658):326–327. doi: 10.1016/s0140-6736(89)90505-9. [DOI] [PubMed] [Google Scholar]
  16. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  17. Paigen B., Holmes P. A., Mitchell D., Albee D. Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis. 1987 Apr;64(2-3):215–221. doi: 10.1016/0021-9150(87)90249-8. [DOI] [PubMed] [Google Scholar]
  18. Qiao J. H., Fishbein M. C., Demer L. L., Lusis A. J. Genetic determination of cartilaginous metaplasia in mouse aorta. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2265–2272. doi: 10.1161/01.atv.15.12.2265. [DOI] [PubMed] [Google Scholar]
  19. Qiao J. H., Tripathi J., Mishra N. K., Cai Y., Tripathi S., Wang X. P., Imes S., Fishbein M. C., Clinton S. K., Libby P. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol. 1997 May;150(5):1687–1699. [PMC free article] [PubMed] [Google Scholar]
  20. Qiao J. H., Xie P. Z., Fishbein M. C., Kreuzer J., Drake T. A., Demer L. L., Lusis A. J. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 1994 Sep;14(9):1480–1497. doi: 10.1161/01.atv.14.9.1480. [DOI] [PubMed] [Google Scholar]
  21. Rajavashisth T. B., Andalibi A., Territo M. C., Berliner J. A., Navab M., Fogelman A. M., Lusis A. J. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254–257. doi: 10.1038/344254a0. [DOI] [PubMed] [Google Scholar]
  22. Rajavashisth T. B., Eng R., Shadduck R. K., Waheed A., Ben-Avram C. M., Shively J. E., Lusis A. J. Cloning and tissue-specific expression of mouse macrophage colony-stimulating factor mRNA. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1157–1161. doi: 10.1073/pnas.84.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rajavashisth T. B., Yamada H., Mishra N. K. Transcriptional activation of the macrophage-colony stimulating factor gene by minimally modified LDL. Involvement of nuclear factor-kappa B. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1591–1598. doi: 10.1161/01.atv.15.10.1591. [DOI] [PubMed] [Google Scholar]
  24. Rettenmier C. W., Roussel M. F., Ashmun R. A., Ralph P., Price K., Sherr C. J. Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes. Mol Cell Biol. 1987 Jul;7(7):2378–2387. doi: 10.1128/mcb.7.7.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosenfeld M. E., Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990 Sep-Oct;10(5):680–687. doi: 10.1161/01.atv.10.5.680. [DOI] [PubMed] [Google Scholar]
  26. Rosenfeld M. E., Ylä-Herttuala S., Lipton B. A., Ord V. A., Witztum J. L., Steinberg D. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol. 1992 Feb;140(2):291–300. [PMC free article] [PubMed] [Google Scholar]
  27. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  28. Schaub R. G., Bree M. P., Hayes L. L., Rudd M. A., Rabbani L., Loscalzo J., Clinton S. K. Recombinant human macrophage colony-stimulating factor reduces plasma cholesterol and carrageenan granuloma foam cell formation in Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb. 1994 Jan;14(1):70–76. doi: 10.1161/01.atv.14.1.70. [DOI] [PubMed] [Google Scholar]
  29. Sherr C. J., Rettenmier C. W., Roussel M. F. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):521–530. doi: 10.1101/sqb.1988.053.01.060. [DOI] [PubMed] [Google Scholar]
  30. Sherr C. J., Rettenmier C. W., Sacca R., Roussel M. F., Look A. T., Stanley E. R. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985 Jul;41(3):665–676. doi: 10.1016/s0092-8674(85)80047-7. [DOI] [PubMed] [Google Scholar]
  31. Shimano H., Yamada N., Ishibashi S., Harada K., Matsumoto A., Mori N., Inaba T., Motoyoshi K., Itakura H., Takaku F. Human monocyte colony-stimulating factor enhances the clearance of lipoproteins containing apolipoprotein B-100 via both low density lipoprotein receptor-dependent and -independent pathways in rabbits. J Biol Chem. 1990 Aug 5;265(22):12869–12875. [PubMed] [Google Scholar]
  32. Smith J. D., Trogan E., Ginsberg M., Grigaux C., Tian J., Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8264–8268. doi: 10.1073/pnas.92.18.8264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stanley E. R., Guilbert L. J., Tushinski R. J., Bartelmez S. H. CSF-1--a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem. 1983;21(2):151–159. doi: 10.1002/jcb.240210206. [DOI] [PubMed] [Google Scholar]
  34. Stoudemire J. B., Garnick M. B. Effects of recombinant human macrophage colony-stimulating factor on plasma cholesterol levels. Blood. 1991 Feb 15;77(4):750–755. [PubMed] [Google Scholar]
  35. Suzu S., Ohtsuki T., Yanai N., Takatsu Z., Kawashima T., Takaku F., Nagata N., Motoyoshi K. Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species. J Biol Chem. 1992 Mar 5;267(7):4345–4348. [PubMed] [Google Scholar]
  36. Tushinski R. J., Oliver I. T., Guilbert L. J., Tynan P. W., Warner J. R., Stanley E. R. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell. 1982 Jan;28(1):71–81. doi: 10.1016/0092-8674(82)90376-2. [DOI] [PubMed] [Google Scholar]
  37. Wang J. M., Griffin J. D., Rambaldi A., Chen Z. G., Mantovani A. Induction of monocyte migration by recombinant macrophage colony-stimulating factor. J Immunol. 1988 Jul 15;141(2):575–579. [PubMed] [Google Scholar]
  38. Warden C. H., Hedrick C. C., Qiao J. H., Castellani L. W., Lusis A. J. Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science. 1993 Jul 23;261(5120):469–472. doi: 10.1126/science.8332912. [DOI] [PubMed] [Google Scholar]
  39. Warren M. K., Ralph P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol. 1986 Oct 1;137(7):2281–2285. [PubMed] [Google Scholar]
  40. Wiktor-Jedrzejczak W., Bartocci A., Ferrante A. W., Jr, Ahmed-Ansari A., Sell K. W., Pollard J. W., Stanley E. R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4828–4832. doi: 10.1073/pnas.87.12.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):442–444. doi: 10.1038/345442a0. [DOI] [PubMed] [Google Scholar]
  42. de Villiers W. J., Fraser I. P., Hughes D. A., Doyle A. G., Gordon S. Macrophage-colony-stimulating factor selectively enhances macrophage scavenger receptor expression and function. J Exp Med. 1994 Aug 1;180(2):705–709. doi: 10.1084/jem.180.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]