Resolution of fluorescence correlation measurements (original) (raw)

Abstract

The resolution limit of fluorescence correlation spectroscopy for two-component solutions is investigated theoretically and experimentally. The autocorrelation function for two different particles in solution were computed, statistical noise was added, and the resulting curve was fitted with a least squares fit. These simulations show that the ability to distinguish between two different molecular species in solution depends strongly on the number of photons detected from each particle, their difference in size, and the concentration of each component in solution. To distinguish two components, their diffusion times must differ by at least a factor of 1.6 for comparable quantum yields and a high fluorescence signal. Experiments were conducted with Rhodamine 6G and Rhodamine-labeled bovine serum albumin. The experimental results support the simulations. In addition, they show that even with a high fluorescence signal but significantly different quantum yields, the diffusion times must differ by a factor much bigger than 1.6 to distinguish the two components. Depending on the quantum yields and the difference in size, there exists a concentration threshold for the less abundant component below which it is not possible to determine with statistical means alone that two particles are in solution.

Full Text

The Full Text of this article is available as a PDF (136.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  2. Berland K. M., So P. T., Gratton E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J. 1995 Feb;68(2):694–701. doi: 10.1016/S0006-3495(95)80230-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrenberg M., Rigler R. Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q Rev Biophys. 1976 Feb;9(1):69–81. doi: 10.1017/s003358350000216x. [DOI] [PubMed] [Google Scholar]
  4. Gordon G. W., Chazotte B., Wang X. F., Herman B. Analysis of simulated and experimental fluorescence recovery after photobleaching. Data for two diffusing components. Biophys J. 1995 Mar;68(3):766–778. doi: 10.1016/S0006-3495(95)80251-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinterdorfer P., Gruber H. J., Striessnig J., Glossmann H., Schindler H. Analysis of membrane protein self-association in lipid systems by fluorescence particle counting: application to the dihydropyridine receptor. Biochemistry. 1997 Apr 15;36(15):4497–4504. doi: 10.1021/bi962009c. [DOI] [PubMed] [Google Scholar]
  6. Huang Z., Thompson N. L. Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes. Biophys J. 1996 Apr;70(4):2001–2007. doi: 10.1016/S0006-3495(96)79766-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers. 1983 Aug;22(8):1919–1948. doi: 10.1002/bip.360220808. [DOI] [PubMed] [Google Scholar]
  8. Kask P., Piksarv P., Pooga M., Mets U., Lippmaa E. Separation of the rotational contribution in fluorescence correlation experiments. Biophys J. 1989 Feb;55(2):213–220. doi: 10.1016/S0006-3495(89)82796-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klingler J., Friedrich T. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy. Biophys J. 1997 Oct;73(4):2195–2200. doi: 10.1016/S0006-3495(97)78251-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meyer T., Schindler H. Particle counting by fluorescence correlation spectroscopy. Simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys J. 1988 Dec;54(6):983–993. doi: 10.1016/S0006-3495(88)83036-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Palmer A. G., 3rd, Thompson N. L. Fluorescence correlation spectroscopy for detecting submicroscopic clusters of fluorescent molecules in membranes. Chem Phys Lipids. 1989 Jun;50(3-4):253–270. doi: 10.1016/0009-3084(89)90053-4. [DOI] [PubMed] [Google Scholar]
  12. Petersen N. O. Diffusion and aggregation in biological membranes. Can J Biochem Cell Biol. 1984 Nov;62(11):1158–1166. doi: 10.1139/o84-149. [DOI] [PubMed] [Google Scholar]
  13. Qian H. On the statistics of fluorescence correlation spectroscopy. Biophys Chem. 1990 Oct;38(1-2):49–57. doi: 10.1016/0301-4622(90)80039-a. [DOI] [PubMed] [Google Scholar]
  14. Rauer B., Neumann E., Widengren J., Rigler R. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem. 1996 Jan 16;58(1-2):3–12. doi: 10.1016/0301-4622(95)00080-1. [DOI] [PubMed] [Google Scholar]
  15. Song L., van Gijlswijk R. P., Young I. T., Tanke H. J. Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry. 1997 Mar 1;27(3):213–223. [PubMed] [Google Scholar]
  16. Straume M., Johnson M. L. Analysis of residuals: criteria for determining goodness-of-fit. Methods Enzymol. 1992;210:87–105. doi: 10.1016/0076-6879(92)10007-z. [DOI] [PubMed] [Google Scholar]