Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis (original) (raw)
. 2000 Sep 15;350(Pt 3):805–814.
Abstract
The sialylation of the oligosaccharides from small-intestinal mucins during a 13-day infectious cycle was studied in Sprague-Dawley rats with the parasite Nippostrongylus brasiliensis. Sialic acid analysis and release, permethylation and analysis by GC-MS of the sialylated oligosaccharides isolated from the 'insoluble' mucin complex revealed a relative decrease (4-7-fold) of N-glycolylneuraminic acid compared with N-acetylneuraminic acid just before parasite expulsion. Northern blots showed that this effect was due to the decreased expression of a hydroxylase converting CMP-N-acetylneuraminic acid into CMP-N-glycolylneuraminic acid. Analysis of other rat strains showed that this parasite infection also caused the same effect in these animals. Detailed analysis of infected Sprague-Dawley rats revealed four sialylated oligosaccharides not found in the uninfected animals. These new oligosaccharides were characterized in detail and all shown to contain the trisaccharide epitope NeuAc/NeuGcalpha2-3(GalNAcbeta1-4)Galbeta1 (where NeuGc is N-glycolyl neuraminic acid). This epitope is similar to the Sd(a)- and Cad-type blood-group antigens and suggests that the infection causes the induction of a GalNAcbeta1-4 glycosyltransferase. This model for an intestinal infection suggests that the glycosylation of intestinal mucins is a dynamic process being modulated by the expression of specific enzymes during an infection process.
Full Text
The Full Text of this article is available as a PDF (273.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelsson M. A., Asker N., Hansson G. C. O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J Biol Chem. 1998 Jul 24;273(30):18864–18870. doi: 10.1074/jbc.273.30.18864. [DOI] [PubMed] [Google Scholar]
- Baeckström D., Hansson G. C., Nilsson O., Johansson C., Gendler S. J., Lindholm L. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J Biol Chem. 1991 Nov 15;266(32):21537–21547. [PubMed] [Google Scholar]
- Blanchard D., Cartron J. P., Fournet B., Montreuil J., van Halbeek H., Vliegenthart J. F. Primary structure of the oligosaccharide determinant of blood group Cad specificity. J Biol Chem. 1983 Jun 25;258(12):7691–7695. [PubMed] [Google Scholar]
- Bry L., Falk P. G., Midtvedt T., Gordon J. I. A model of host-microbial interactions in an open mammalian ecosystem. Science. 1996 Sep 6;273(5280):1380–1383. doi: 10.1126/science.273.5280.1380. [DOI] [PubMed] [Google Scholar]
- Capon C., Laboisse C. L., Wieruszeski J. M., Maoret J. J., Augeron C., Fournet B. Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL.16E. J Biol Chem. 1992 Sep 25;267(27):19248–19257. [PubMed] [Google Scholar]
- Carlstedt I., Herrmann A., Karlsson H., Sheehan J., Fransson L. A., Hansson G. C. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J Biol Chem. 1993 Sep 5;268(25):18771–18781. [PubMed] [Google Scholar]
- Gagneux P., Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 1999 Aug;9(8):747–755. doi: 10.1093/glycob/9.8.747. [DOI] [PubMed] [Google Scholar]
- Gendler S. J., Lancaster C. A., Taylor-Papadimitriou J., Duhig T., Peat N., Burchell J., Pemberton L., Lalani E. N., Wilson D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990 Sep 5;265(25):15286–15293. [PubMed] [Google Scholar]
- Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
- Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
- Hansson G. C. Structural aspects of blood group glycosphingolipids in the gastrointestinal tract. Adv Exp Med Biol. 1988;228:465–494. doi: 10.1007/978-1-4613-1663-3_17. [DOI] [PubMed] [Google Scholar]
- Herrmann A., Davies J. R., Lindell G., Mårtensson S., Packer N. H., Swallow D. M., Carlstedt I. Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999 May 28;274(22):15828–15836. doi: 10.1074/jbc.274.22.15828. [DOI] [PubMed] [Google Scholar]
- Hidari J. K., Ichikawa S., Furukawa K., Yamasaki M., Hirabayashi Y. beta 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a beta 1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem J. 1994 Nov 1;303(Pt 3):957–965. doi: 10.1042/bj3030957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hounsell E. F., Davies M. J., Renouf D. V. O-linked protein glycosylation structure and function. Glycoconj J. 1996 Feb;13(1):19–26. doi: 10.1007/BF01049675. [DOI] [PubMed] [Google Scholar]
- Ishikawa N., Horii Y., Nawa Y. Immune-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology. 1993 Feb;78(2):303–307. [PMC free article] [PubMed] [Google Scholar]
- Ishikawa N., Horii Y., Oinuma T., Suganuma T., Nawa Y. Goblet cell mucins as the selective barrier for the intestinal helminths: T-cell-independent alteration of goblet cell mucins by immunologically 'damaged' Nippostrongylus brasiliensis worms and its significance on the challenge infection with homologous and heterologous parasites. Immunology. 1994 Mar;81(3):480–486. [PMC free article] [PubMed] [Google Scholar]
- Karlsson K. A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem. 1989;58:309–350. doi: 10.1146/annurev.bi.58.070189.001521. [DOI] [PubMed] [Google Scholar]
- Karlsson N. G., Hansson G. C. Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal Biochem. 1995 Jan 20;224(2):538–541. doi: 10.1006/abio.1995.1084. [DOI] [PubMed] [Google Scholar]
- Karlsson N. G., Herrmann A., Karlsson H., Johansson M. E., Carlstedt I., Hansson G. C. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J Biol Chem. 1997 Oct 24;272(43):27025–27034. doi: 10.1074/jbc.272.43.27025. [DOI] [PubMed] [Google Scholar]
- Karlsson N. G., Johansson M. E., Asker N., Karlsson H., Gendler S. J., Carlstedt I., Hansson G. C. Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J. 1996 Oct;13(5):823–831. doi: 10.1007/BF00702346. [DOI] [PubMed] [Google Scholar]
- Karlsson N. G., Karlsson H., Hansson G. C. Strategy for the investigation of O-linked oligosaccharides from mucins based on the separation into neutral, sialic acid- and sulfate-containing species. Glycoconj J. 1995 Feb;12(1):69–76. doi: 10.1007/BF00731871. [DOI] [PubMed] [Google Scholar]
- Kawano T., Koyama S., Takematsu H., Kozutsumi Y., Kawasaki H., Kawashima S., Kawasaki T., Suzuki A. Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem. 1995 Jul 7;270(27):16458–16463. doi: 10.1074/jbc.270.27.16458. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Gum J., Jr, Brockhausen I. Mucin glycoproteins in neoplasia. Glycoconj J. 1996 Oct;13(5):693–707. doi: 10.1007/BF00702333. [DOI] [PubMed] [Google Scholar]
- Medzhitov R., Janeway C. A., Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997 Oct 31;91(3):295–298. doi: 10.1016/s0092-8674(00)80412-2. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Yamashiro S., Yodoi J., Lloyd K. O., Shiku H., Furukawa K. Expression cloning of beta 1,4 N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J Biol Chem. 1992 Jun 15;267(17):12082–12089. [PubMed] [Google Scholar]
- Oinuma T., Abe T., Nawa Y., Kawano J., Suganuma T. Glycoconjugates in rat small intestinal mucosa during infection with the intestinal nematode Nippostrongylus brasiliensis. Adv Exp Med Biol. 1995;371B:975–978. [PubMed] [Google Scholar]
- Perez-Vilar J., Eckhardt A. E., DeLuca A., Hill R. L. Porcine submaxillary mucin forms disulfide-linked multimers through its amino-terminal D-domains. J Biol Chem. 1998 Jun 5;273(23):14442–14449. doi: 10.1074/jbc.273.23.14442. [DOI] [PubMed] [Google Scholar]
- Serafini-Cessi F., Malagolini N., Dall'Olio F. Characterization and partial purification of beta-N-acetylgalactosaminyltransferase from urine of Sd(a+) individuals. Arch Biochem Biophys. 1988 Nov 1;266(2):573–582. doi: 10.1016/0003-9861(88)90290-1. [DOI] [PubMed] [Google Scholar]
- Serafini-Cessi F., Malagolini N., Guerrini S., Turrini I. A soluble form of Sda-beta 1,4-N-acetylgalactosaminyltransferase is released by differentiated human colon carcinoma CaCo-2 cells. Glycoconj J. 1995 Dec;12(6):773–779. doi: 10.1007/BF00731238. [DOI] [PubMed] [Google Scholar]
- Sheehan J. K., Thornton D. J., Howard M., Carlstedt I., Corfield A. P., Paraskeva C. Biosynthesis of the MUC2 mucin: evidence for a slow assembly of fully glycosylated units. Biochem J. 1996 May 1;315(Pt 3):1055–1060. doi: 10.1042/bj3151055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. L., Lowe J. B. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem. 1994 May 27;269(21):15162–15171. [PubMed] [Google Scholar]
- Stellner K., Saito H., Hakomori S. I. Determination of aminosugar linkages in glycolipids by methylation. Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys. 1973 Apr;155(2):464–472. doi: 10.1016/0003-9861(73)90138-0. [DOI] [PubMed] [Google Scholar]
- Strecker G., Wieruszeski J. M., Cuvillier O., Michalski J. C., Montreuil J. 1H and 13C-NMR assignments for sialylated oligosaccharide-alditols related to mucins. Study of thirteen components from hen ovomucin and swallow nest mucin. Biochimie. 1992 Jan;74(1):39–51. doi: 10.1016/0300-9084(92)90182-e. [DOI] [PubMed] [Google Scholar]
- Takeya A., Hosomi O., Kogure T. Identification and characterization of UDP-GalNAc: NeuAc alpha 2-3Gal beta 1-4Glc(NAc) beta 1-4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human blood plasma. J Biochem. 1987 Jan;101(1):251–259. doi: 10.1093/oxfordjournals.jbchem.a121898. [DOI] [PubMed] [Google Scholar]
- Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
- Wingren U., Enerbäck L., Ahlman H., Allenmark S., Dahlström A. Amines of the mucosal mast cell of the gut in normal and nematode infected rats. Histochemistry. 1983;77(2):145–158. doi: 10.1007/BF00506557. [DOI] [PubMed] [Google Scholar]