Technical knockout, a Drosophila model of mitochondrial deafness (original) (raw)

Abstract

Mutations in mtDNA-encoded components of the mitochondrial translational apparatus are associated with diverse pathological states in humans, notably sensorineural deafness. To develop animal models of such disorders, we have manipulated the nuclear gene for mitochondrial ribosomal protein S12 in Drosophila (technical knockout, tko). The prototypic mutant tko(25t) exhibits developmental delay, bang sensitivity, impaired male courtship, and defective response to sound. On the basis of a transgenic reversion test, these phenotypes are attributable to a single substitution (L85H) at a conserved residue of the tko protein. The mutant is hypersensitive to doxycyclin, an antibiotic that selectively inhibits mitochondrial protein synthesis, and mutant larvae have greatly diminished activities of mitochondrial redox enzymes and decreased levels of mitochondrial small-subunit rRNA. A second mutation in the tko gene, Q116K, which is predicted to impair the accuracy of mitochondrial translation, results in the completely different phenotype of recessive female sterility, based on three independent transgenic insertions. We infer that the tko(25t) mutant provides a model of mitochondrial hearing impairment resulting from a quantitative deficiency of mitochondrial translational capacity.

Full Text

The Full Text of this article is available as a PDF (213.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Denk W., Holt J. R., Shepherd G. M., Corey D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron. 1995 Dec;15(6):1311–1321. doi: 10.1016/0896-6273(95)90010-1. [DOI] [PubMed] [Google Scholar]
  2. Dennis P. P., Young R. F. Regulation of ribosomal protein synthesis in Escherichia coli B/r. J Bacteriol. 1975 Mar;121(3):994–999. doi: 10.1128/jb.121.3.994-999.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eberl D. F., Duyk G. M., Perrimon N. A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14837–14842. doi: 10.1073/pnas.94.26.14837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eberl D. F. Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol. 1999 Aug;9(4):389–393. doi: 10.1016/S0959-4388(99)80058-0. [DOI] [PubMed] [Google Scholar]
  5. Engel J. E., Wu C. F. Altered mechanoreceptor response in Drosophila bang-sensitive mutants. J Comp Physiol A. 1994 Sep;175(3):267–278. doi: 10.1007/BF00192986. [DOI] [PubMed] [Google Scholar]
  6. Errede B., Kamen M. D., Hatefi Y. Preparation and properties of complex IV (ferrocytochrome c: oxygen oxidoreductase EC 1.9.3.1). Methods Enzymol. 1978;53:40–47. doi: 10.1016/s0076-6879(78)53011-5. [DOI] [PubMed] [Google Scholar]
  7. Fischel-Ghodsian N. Mitochondrial deafness mutations reviewed. Hum Mutat. 1999;13(4):261–270. doi: 10.1002/(SICI)1098-1004(1999)13:4<261::AID-HUMU1>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  8. Hardisty R. E., Fleming J., Steel K. P. The molecular genetics of inherited deafness--current knowledge and recent advances. J Laryngol Otol. 1998 May;112(5):432–437. doi: 10.1017/s002221510014071x. [DOI] [PubMed] [Google Scholar]
  9. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  10. Jacobs H. T. Mitochondrial deafness. Ann Med. 1997 Dec;29(6):483–491. doi: 10.3109/07853899709007472. [DOI] [PubMed] [Google Scholar]
  11. Jouaville L. S., Ichas F., Mazat J. P. Modulation of cell calcium signals by mitochondria. Mol Cell Biochem. 1998 Jul;184(1-2):371–376. [PubMed] [Google Scholar]
  12. Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirov N. C., Lieberman P. M., Rushlow C. The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation. EMBO J. 1996 Dec 16;15(24):7079–7087. [PMC free article] [PubMed] [Google Scholar]
  14. Kongsuwan K., Yu Q., Vincent A., Frisardi M. C., Rosbash M., Lengyel J. A., Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature. 1985 Oct 10;317(6037):555–558. doi: 10.1038/317555a0. [DOI] [PubMed] [Google Scholar]
  15. Konopka R. J., Hamblen-Coyle M. J., Jamison C. F., Hall J. C. An ultrashort clock mutation at the period locus of Drosophila melanogaster that reveals some new features of the fly's circadian system. J Biol Rhythms. 1994 Winter;9(3-4):189–216. doi: 10.1177/074873049400900303. [DOI] [PubMed] [Google Scholar]
  16. Mariottini P., Shah Z. H., Toivonen J. M., Bagni C., Spelbrink J. N., Amaldi F., Jacobs H. T. Expression of the gene for mitoribosomal protein S12 is controlled in human cells at the levels of transcription, RNA splicing, and translation. J Biol Chem. 1999 Nov 5;274(45):31853–31862. doi: 10.1074/jbc.274.45.31853. [DOI] [PubMed] [Google Scholar]
  17. McRobert S. P., Schnee F. B., Tompkins L. Selection for increased female sexual receptivity in raised stocks of Drosophila melanogaster. Behav Genet. 1995 Jul;25(4):303–309. doi: 10.1007/BF02197279. [DOI] [PubMed] [Google Scholar]
  18. Pavlidis P., Ramaswami M., Tanouye M. A. The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell. 1994 Oct 7;79(1):23–33. doi: 10.1016/0092-8674(94)90397-2. [DOI] [PubMed] [Google Scholar]
  19. Pavlidis P., Tanouye M. A. Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. J Neurosci. 1995 Aug;15(8):5810–5819. doi: 10.1523/JNEUROSCI.15-08-05810.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prezant T. R., Agapian J. V., Bohlman M. C., Bu X., Oztas S., Qiu W. Q., Arnos K. S., Cortopassi G. A., Jaber L., Rotter J. I. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 1993 Jul;4(3):289–294. doi: 10.1038/ng0793-289. [DOI] [PubMed] [Google Scholar]
  21. Ritchie MG, Halsey EJ, Gleason JM. Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Anim Behav. 1999 Sep;58(3):649–657. doi: 10.1006/anbe.1999.1167. [DOI] [PubMed] [Google Scholar]
  22. Ritchie MG, Townhill RM, Hoikkala A. Female preference for fly song: playback experiments confirm the targets of sexual selection. Anim Behav. 1998 Sep;56(3):713–717. doi: 10.1006/anbe.1998.0799. [DOI] [PubMed] [Google Scholar]
  23. Royden C. S., Pirrotta V., Jan L. Y. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell. 1987 Oct 23;51(2):165–173. doi: 10.1016/0092-8674(87)90144-9. [DOI] [PubMed] [Google Scholar]
  24. Rubenstein J. L., Brutlag D., Clayton D. A. The mitochondrial DNA of Drosophila melanogaster exists in two distinct and stable superhelical forms. Cell. 1977 Oct;12(2):471–482. doi: 10.1016/0092-8674(77)90123-4. [DOI] [PubMed] [Google Scholar]
  25. Saebøe-Larssen S., Lyamouri M., Merriam J., Oksvold M. P., Lambertsson A. Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship. Genetics. 1998 Mar;148(3):1215–1224. doi: 10.1093/genetics/148.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schubiger M., Feng Y., Fambrough D. M., Palka J. A mutation of the Drosophila sodium pump alpha subunit gene results in bang-sensitive paralysis. Neuron. 1994 Feb;12(2):373–381. doi: 10.1016/0896-6273(94)90278-x. [DOI] [PubMed] [Google Scholar]
  27. Shah Z. H., O'Dell K. M., Miller S. C., An X., Jacobs H. T. Metazoan nuclear genes for mitoribosomal protein S12. Gene. 1997 Dec 19;204(1-2):55–62. doi: 10.1016/s0378-1119(97)00521-0. [DOI] [PubMed] [Google Scholar]
  28. Shannon M. P., Kaufman T. C., Shen M. W., Judd B. H. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster. Genetics. 1972 Dec;72(4):615–638. doi: 10.1093/genetics/72.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sondergaard L., Nielsen N. C., Smillie R. M. The effect of the Out-cold-ts mutation on temperature induced changes in the Arrhenius activation energy of succinate-cytochrome c reductase activity in Drosophila. FEBS Lett. 1975 Mar 1;51(1):126–129. doi: 10.1016/0014-5793(75)80868-4. [DOI] [PubMed] [Google Scholar]
  30. Talamillo A., Chisholm A. A., Garesse R., Jacobs H. T. Expression of the nuclear gene encoding mitochondrial ATP synthase subunit alpha in early development of Drosophila and sea urchin. Mol Biol Rep. 1998 Mar;25(2):87–94. doi: 10.1023/a:1006868306735. [DOI] [PubMed] [Google Scholar]
  31. Tavernarakis N., Driscoll M. Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu Rev Physiol. 1997;59:659–689. doi: 10.1146/annurev.physiol.59.1.659. [DOI] [PubMed] [Google Scholar]
  32. Toivonen J. M., Boocock M. R., Jacobs H. T. Modelling in Escherichia coli of mutations in mitoribosomal protein S12: novel mutant phenotypes of rpsL. Mol Microbiol. 1999 Mar;31(6):1735–1746. doi: 10.1046/j.1365-2958.1999.01307.x. [DOI] [PubMed] [Google Scholar]
  33. Tourmente S., Savre-Train I., Berthier F., Renaud M. Expression of six mitochondrial genes during Drosophila oogenesis: analysis by in situ hybridization. Cell Differ Dev. 1990 Aug;31(2):137–149. doi: 10.1016/0922-3371(90)90017-q. [DOI] [PubMed] [Google Scholar]
  34. Walker R. G., Willingham A. T., Zuker C. S. A Drosophila mechanosensory transduction channel. Science. 2000 Mar 24;287(5461):2229–2234. doi: 10.1126/science.287.5461.2229. [DOI] [PubMed] [Google Scholar]
  35. Wibom R., Söderlund K., Lundin A., Hultman E. A luminometric method for the determination of ATP and phosphocreatine in single human skeletal muscle fibres. J Biolumin Chemilumin. 1991 Apr-Jun;6(2):123–129. doi: 10.1002/bio.1170060210. [DOI] [PubMed] [Google Scholar]
  36. Wolstenholme D. R. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216. doi: 10.1016/s0074-7696(08)62066-5. [DOI] [PubMed] [Google Scholar]