Species differentiation and identification in the genus of Helicobacter (original) (raw)
TEXT
As early as nineteen century, incidental presence of spiral organisms was noted in the stomachs of dogs[1], rats and cats[2]. In the early years of this century, spiral organisms were also found in the gastric contents of patients with ulcerative carcinoma[3]. During the ensuing 30 years, there were scattered reports of these organisms being found in the stomach of patients with benign peptic ulcers. Do-enges[4] showed a prevalence of 43% of spiral organisms in a comprehensive autopsy study in 242 human stomach specimens. However, he did not associate the presence of the spiral organism with various gastric diseases.
Controversy existed over the possible role of these spiral organisms in human gastric disease. It was suggested that the bacteria observed in gastric biopsies might represent bacterial contaminants introduced from mouth. This hypothesis gained support with the publication of an extensive histologic study of gastric biopsies from 1000 subjects by Palmer[5]. After the publication of the report the interest in gastric bacteria waned.
Interest in the role of gastric bacteria in the pathogenesis of peptic ulcer disease was rekindled when Steer and Colin Jones[6] reported the presence of bacteria deep in the mucus layer of gastric mucosa in patients with gastric ulceration. It was suggested that the bacteria might cause a reduction in gastric mucosal resistance via predisposal to ulceration. Attempts to culture this bact erium yielded growth of Pseudomonas aeruginosa. Retrospectively, careful examination of the figures in this publication[6] suggests that the organism seen on the mucosa is a spiral bacterium, a morphological form not associated with P. aeruginosa. It is now assumed that the culture of P.aeruginosa by these authors represents a contaminant cultured from the endoscope. With the discovery of Helicobacter pylori by Warren and Marshall[7], it has been shown that H. pylori is as-sociated with gastroduodenal disease[8,9].
The spiral organism was first named Campy-lobacter pyloridis in 1984[10]. However, the rules of Latin grammar changed the name to _Campylobacter pylori_[11]. Ribosomal ribonucleic acid sequences showed that the bacterium did not belong to the Campylobacter genus[12-14]. In 1989, Goodw in et al[15] proposed a new genus called Helicobacter on the bases of 5 major taxonomic features: ultrastruc-ture and morphology, cellular fatty acid profiles, menaquinones, growth characteristics and enzyme capabilities. C . pylori was, therefore, transferred to the new genus and renamed as Helicobacter pylori. The major features[15,29] of Helicobacter genus consist of (1) Helical, curved or straight unbranched morphology. (2) Gram negative. (3) Endospores are not produced. (4) Rapid, darting motility by means of multiple sheathed flagella that are unipolar or bipolar and lateral, with terminal bulbs. (5) Optimal growth at 37 °C; growth at 30 °C but not at 25 °C variable growth at 42 °C. (6) Microaerophilic, variable growth in air enriched with 100 mL/L -CO2 and anaerobically. (7) External glycocalyx produced in broth cultures. (8) Susceptible to penicillin, ampi-cillin, amoxicillin, erythromycin, gentamicin, kanamycin, rifampin and tetracycline. Resistance to nalidixic acid, cephalothin, metronidazole and polymysin. (9) G+C content of chromosomal DNA of 200 mol/L-440 mol/L.
It has been a decade since the genus of Heli-cobacter was created. This genus expands rapidly from at first only two species,viz. H. pylori and Helicobacter mustelae, to 20 species[15-35] and one associated species[36] with a wide variety of sources isolated from either human beings and/or different animals. The characteristic details of the Helicobacter genus, which might be useful in the differentia-tion and identification of different Helicobacter species in microbiological laboratory, are listed in Tables 1, 2, 3 and 4. The genus of Helicobacter will surely continue to enlarge as more data of Helicobacter features are available and more animal hosts are investigated. Molecular methods, such as PCR, will provide the most accurate tests in diff erentiation and identification in future with the publi-cation of the genomic library of _H. pylori_[37].
Table 1.
Locations, key morphological features and growth characteristics of Helicobacter species colonizing either humans and/or animals
Charastistic | H. pylori | H. canis | H. cinaedi | H.felis | H. fennelliae | H. pullorum | H. westmeadii |
---|---|---|---|---|---|---|---|
Host | Human | Dog, human | Human | Cat,dog, human | Human | Poultry, human | Human |
Location | Stomach | Intestine | Blood, rectum | Stomach | Intestine | Intestine | Blood |
Cell size (µm) | 0.5 × 3.0-5.0 | 4.0 | 0.3-0.5 × 1.5-5.0 | 0.4 × 5-7.5 | 0.3-0.5 × 1.5-5.0 | 3 × 4 | 0.5 × 1.5-2.0 |
Flagella | |||||||
Number | 4-8 | 2 | 1-2 | 14-20 | 1-2 | 1 | 1 |
Distribution | Polar | Biopolar | Polar | Biopolar | Polar | Monopolar | Monopolar |
Sheath | + | + | + | + | + | - | + |
Periplasmic fibers | - | - | - | + | - | - | |
Growth at: | |||||||
25 °C | - | - | - | - | - | - | - |
37 °C | + | + | + | + | + | + | + |
42 °C | - | + | - | + | - | + | - |
Growth on: | |||||||
10 g/Lglycine | - | + | - | + | |||
15 g/L NaCl | - | - | - | - | |||
Tolerance to: | |||||||
10 g/L bile | - | + | Vary | - | - | + | |
Safrain ‘O’ | - | - | - | - | + | - | |
Methyl orange | - | - | + | - | Vary | + | |
Growth under: | |||||||
Aerobic conditions | - | - | - | - | - | - | - |
Microaerobic conditions | + | + | + | + | + | + | Weak+ |
Anaerobic | Weak+ | - | - | + | - | - | + |
Susceptibility to: | |||||||
Nalidixic acid | R | S | S | R | S | S | S |
Cephalothin | S | S | I | S | S | R | R |
Cefoperazone | S | S | S | S | S | R | |
Metronidazole | S | S | S |
Table 2.
Locations, key morphological features and growth characteristics of Helicobacter species colonizing animals
Charastistic | H. acinonyx | H. bilis | H. bizzozeronii | H. cholecystus | H. hepaticus | H. nuridarum | H. mustelae | H. nemestrinae | H. pametensis | H. rodentium | H. salomonis | H. trogontum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Host | Cheetah | Mice | Dog | Hamster | Mice | Rat, mice | Ferret | Macaque | Bird, swine | Mice | Dog | Rat |
Location | Stomach | Bile,live, intestine | Stomach | Gallbladder | live, intestine | Intestine | Stomach | Stomach | Intestine | Intestine | Stomach | Intestine |
Cell size (µm) | 0.3 × 1.5 - 2.0 | 0.5 × 4.0 - 5.0 | 0.3 × 5 - 10 | 0.5 - 0.6 × 3.0 - 5.0 | 0.2-0.3× 1.5 - 5.0 | 0.5 × 3.5 - 5.0 | 0.5 - 2.5 × 5.0 | 0.2 × 2.0 - 5.0 | 0.4 - 1.5 | 0.3 × 1.5 - 5.0 | 0.8 - 1.2 × 5.0 - 7.0 | 0.6 - 0.7 × 4.0 - 6.0 |
Flagella | ||||||||||||
Number | 2-5 | 3-14 | 10-20 | 1 | 2 | 10-14 | 4-8 | 4-8 | 2 | 2 | 10-23 | 3-7 |
Distribution | Monopolar Biopolar | Biopolar | Polar | Biopolar | Biopolar | Peritrich ous | Polar | Biopolar | Biopolar | Biopolar | Biopolar | |
Sheath | + | + | + | + | + | + | + | + | + | - | + | + |
Periplasmic fibers | - | + | - | - | - | + | - | - | - | - | - | + |
Growth at: | ||||||||||||
25 °C | - | - | - | - | - | - | - | - | - | - | - | - |
37 °C | + | + | + | + | + | + | + | + | + | + | + | + |
42 °C | - | + | + | + | - | - | + | + | + | + | - | + |
Growth on: | ||||||||||||
10 g/L glycine | - | + | - | + | + | - | - | - | + | + | - | |
15 g/L NaCl | - | - | - | + | - | - | - | - | + | - | ||
Toleranceto: | ||||||||||||
10 g/L bile | + | - | + | - | - | - | - | |||||
Safrain ‘O’ | - | - | - | |||||||||
Methyl orange | - | - | - | |||||||||
Growth under: | ||||||||||||
Aerobic conditions | - | - | - | - | - | - | - | - | ||||
Microaerobic conditions | + | + | + | + | + | + | + | + | + | + | + | + |
Anaerobic | + | + | - | + | Weak+ | Weak+ | + | - | ||||
Susceptibility to: | ||||||||||||
Nalidixic acid | R | R | R | I | R | R | S | R | S | R | R | R |
Cephalothin | S | R | S | R | R | R | R | S | S | R | S | R |
Cefoperazone | S | S | R | S | S | |||||||
Metronidazole | S | S | S | S | S | S | S | S |
Table 3.
Key and differential biochemical characteristics of Helicobacter species colonizing either humans and/or animals
Characteristic | H. pylori | H. canis | H. cinaedi | H. felis | H. fennelliae | H. pullorum | H. westmeadii |
---|---|---|---|---|---|---|---|
Catalase activity | + | - | + | + | + | + | + |
Urease activity | + | - | - | + | - | - | - |
Oxidase activity | + | + | + | + | + | + | + |
Alkaline phosphatase activity | + | + | - | + | + | - | + |
γ-Glutamyl transpeptidase activity | + | - | + | - | |||
H2S production | - | - | - | - | - | ||
Indoxyl acetate hydrolysis | - | + | - | - | + | - | - |
Hippurate hydrolysis | - | - | - | - | - | - | + |
Nitrate reduction | - | - | + | + | - | + | + |
C4 esterase | + | + | + | + | |||
C8 esterase lipase | + | + | + | + | |||
Leucine arylamidase | + | - | + | - | + | ||
Acid phosphatase | + | + | + | + | |||
Naphthol-AS-B1-phosphohydrolase | + | + | + | + | |||
DNase activity | + | + | |||||
G + C content (mol%) | 35-37 | 48 | 37-38 | 43 | 37-38 | 34-35 |
Table 4.
Key and differential biochemical characteristics of Helicobacter species colonizing animalsCharacteristic
H. acinonyx | H. bilis | H. bizzozeronii | H. cholecystus | H. hepaticus | H. muridarum | H. mustelae | H. nemestrinae | H. pametensis | H. rodentium | H. salomonis | H. trogontum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalase activity | + | + | + | + | + | + | + | + | + | + | + | + |
Urease activity | + | + | + | - | + | + | + | + | - | - | + | + |
Oxidase activity | + | + | + | + | + | + | + | + | Weak+ | + | + | |
Alkaline phosphatase activity | + | + | + | + | + | + | + | - | + | - | ||
γ-Glutamyl transpeptidase activity | + | + | - | + | + | - | - | + | + | |||
H2Sproduction | + | - | + | - | - | - | - | - | ||||
Indoxyl acetate hydrolysis | - | - | + | - | + | + | + | - | - | - | + | |
Hippurate hydrolysis | - | - | - | - | - | - | - | - | - | - | - | - |
Nitrate reduction | - | + | + | + | + | - | + | - | + | + | + | + |
DNase activity | + | - | + | |||||||||
G + C content (mol%) | 30 | 35 | 36 | 24 | 38 |
Footnotes
References
- 1.Bizzozero B. Ueber die schlauchfoermigen Drusen des magendarmaaakanals und die beziehunger ihres epithels zu dem oberfachenepithel der schleimhaut. Arch F Mikr Anat. 1893;23:82–152. [Google Scholar]
- 2.Salomon H. Ueber das spirillum des saugetiermagens und sein verhalten zu den belegzellen. Zentralbl Bakteriol Microbiol Hyg. 1896;19:433–442. [Google Scholar]
- 3.Krienitz W. Ueber das auftreten von spirochaeten verschiedener form im magenin-halt bei carcinoma ventriculi. Dtsch Med Wochenschr. 1906;32:872–876. [Google Scholar]
- 4.Doenges JL. Spirochetes in the gastric glands of macacus rhesus and humans without definite history of related disease. Proc Soc ExpMed Biol. 1938;38:536–538. [Google Scholar]
- 5.PALMER ED. Investigation of the gastric mucosa spirochetes of the human. Gastroenterology. 1954;27:218–220. [PubMed] [Google Scholar]
- 6.Steer HW, Colin-Jones DG. Mucosal changes in gastric ulceration and their response to carbenoxolone sodium. Gut. 1975;16:590–597. doi: 10.1136/gut.16.8.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983;1:1273–1275. [PubMed] [Google Scholar]
- 8.Goodwin CS, Armstrong JA, Marshall BJ. Campylobacter pyloridis, gastritis, and peptic ulceration. J Clin Pathol. 1986;39:353–365. doi: 10.1136/jcp.39.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wee A, Kang JY, Teh M. Helicobacter pylori and gastric cancer: correlation with gastritis, intestinal metaplasia, and tumour histology. Gut. 1992;33:1029–1032. doi: 10.1136/gut.33.8.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Marshall BJ, Royce H, Annear DL, Goodwin CS, Pearman JW, Warren JR. Origi-nal isolaton of Campylobacter pyloridis from human gastric mucosa. Biomed Letts. 1984;25:83–88. [Google Scholar]
- 11.Marshall BJ, Goodwin CS. Revised nomenclature of Campylobacter pyloridis. Int J Syst Bacteriol. 1987:37: 68. [Google Scholar]
- 12.Lau PP, DeBrunner-Vossbrinck B, Dunn B, Miotto K, MacDonnell MT, Rollins DM, Pillidge CJ, Hespell RB, Colwell RR, Sogin ML, et al. Phylogenetic diversity and position of the genus Campylobacter. Syst Appl Microbiol. 1987;9:231–238. doi: 10.1016/s0723-2020(87)80027-9. [DOI] [PubMed] [Google Scholar]
- 13.Romaniuk PJ, Zoltowska B, Trust TJ, Lane DJ, Olsen GJ, Pace NR, Stahl DA. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol. 1987;169:2137–2141. doi: 10.1128/jb.169.5.2137-2141.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Thompson LM, Smibert RM, Johnson JL, Krieg NR. Phylogenetic study of the genus Campylobacter. Int J Syst Bacteriol. 1988;38:190–199. [Google Scholar]
- 15.Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, Sly L. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. respec-tively. Int J Syst Bacteriol. 1989;39:397–409. [Google Scholar]
- 16.Hua JS, Ho B. General Microbiology. In: Fan XG, Xia HX eds. Helicobacter py-lori infection: basic principals and clinical practice. Hunan Science and Tech-nology Press. 1997:7–11. [Google Scholar]
- 17.Eaton KA, Dewhirst FE, Radin MJ, Fox JG, Paster BJ, Krakowka S, Morgan DR. Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int J Syst Bacteriol. 1993;43:99–106. doi: 10.1099/00207713-43-1-99. [DOI] [PubMed] [Google Scholar]
- 18.Fox JG, Yan LL, Dewhirst FE, Paster BJ, Shames B, Murphy JC, Hayward A, Belcher JC, Mendes EN. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol. 1995;33:445–454. doi: 10.1128/jcm.33.2.445-454.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Hänninen ML, Happonen I, Saari S, Jalava K. Culture and characteristics of Helicobacter bizzozeronii, a new canine gastric Helicobacter sp. Int J Syst Bacteriol. 1996;46:160–166. doi: 10.1099/00207713-46-1-160. [DOI] [PubMed] [Google Scholar]
- 20.Stanley J, Linton D, Burnens AP, Dewhirst FE, Owen RJ, Porter A, On SL, Costas M. Helicobacter canis sp. nov., a new species from dogs: an integrated study of phenotype and genotype. J Gen Microbiol. 1993;139:2495–2504. doi: 10.1099/00221287-139-10-2495. [DOI] [PubMed] [Google Scholar]
- 21.Franklin CL, Beckwith CS, Livingston RS, Riley LK, Gibson SV, Besch-Williford CL, Hook RR. Isolation of a novel Helicobacter species, Helicobacter cholecystus sp. nov., from the gallbladders of Syrian hamsters with cholangiofibrosis and centrilobular pancreatitis. J Clin Microbiol. 1996;34:2952–2958. doi: 10.1128/jcm.34.12.2952-2958.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Paster BJ, Lee A, Fox JG, Dewhirst FE, Tordoff LA, Fraser GJ, O'Rourke JL, Taylor NS, Ferrero R. Phylogeny of Helicobacter felis sp. nov., Helicobacter mustelae, and related bacteria. Int J Syst Bacteriol. 1991;41:31–38. doi: 10.1099/00207713-41-1-31. [DOI] [PubMed] [Google Scholar]
- 23.Fennell CL, Totten PA, Quinn TC, Patton DL, Holmes KK, Stamm WE. Characterization of Campylobacter-like organisms isolated from homosexual men. J Infect Dis. 1984;149:58–66. doi: 10.1093/infdis/149.1.58. [DOI] [PubMed] [Google Scholar]
- 24.McNulty CA, Dent JC, Curry A, Uff JS, Ford GA, Gear MW, Wilkinson SP. New spiral bacterium in gastric mucosa. J Clin Pathol. 1989;42:585–591. doi: 10.1136/jcp.42.6.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Hazell SL. Isolation of "Helicobacter heilmannii" from human tissue. Eur J Clin Microbiol Infect Dis. 1996;15:4–9. doi: 10.1007/BF01586180. [DOI] [PubMed] [Google Scholar]
- 26.Fox JG, Dewhirst FE, Tully JG, Paster BJ, Yan L, Taylor NS, Collins MJ, Gorelick PL, Ward JM. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol. 1994;32:1238–1245. doi: 10.1128/jcm.32.5.1238-1245.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Lee A, Phillips MW, O'Rourke JL, Paster BJ, Dewhirst FE, Fraser GJ, Fox JG, Sly LI, Romaniuk PJ, Trust TJ. Helicobacter muridarum sp. nov., a microaerophilic helical bacterium with a novel ultrastructure isolated from the intestinal mucosa of rodents. Int J Syst Bacteriol. 1992;42:27–36. doi: 10.1099/00207713-42-1-27. [DOI] [PubMed] [Google Scholar]
- 28.Fox JG, Taylor NS, Edmonds P, Brenner DJ. Campylobacter pylori subsp. Mustelae subsp. Nov. isolated from the gastric muscosa of ferrets (Mustela putorius furo), and an emended description of Campylobacter pylori. Int J Syst Bacteriol. 1988;38:367–370. [Google Scholar]
- 29.Bronsdon MA, Goodwin CS, Sly LI, Chilvers T, Schoenknecht FD. Helicobacter nemestrinae sp. nov., a spiral bacterium found in the stomach of a pigtailed macaque (Macaca nemestrina) Int J Syst Bacteriol. 1991;41:148–153. doi: 10.1099/00207713-41-1-148. [DOI] [PubMed] [Google Scholar]
- 30.Dewhirst FE, Seymour C, Fraser GJ, Paster BJ, Fox JG. Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol. 1994;44:553–560. doi: 10.1099/00207713-44-3-553. [DOI] [PubMed] [Google Scholar]
- 31.Stanley J, Linton D, Burnens AP, Dewhirst FE, On SL, Porter A, Owen RJ, Costas M. Helicobacter pullorum sp. nov.-genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology. 1994;140(Pt 12):3441–3449. doi: 10.1099/13500872-140-12-3441. [DOI] [PubMed] [Google Scholar]
- 32.Shen Z, Fox JG, Dewhirst FE, Paster BJ, Foltz CJ, Yan L, Shames B, Perry L. Helicobacter rodentium sp. nov., a urease-negative Helicobacter species isolated from laboratory mice. Int J Syst Bacteriol. 1997;47:627–634. doi: 10.1099/00207713-47-3-627. [DOI] [PubMed] [Google Scholar]
- 33.Jalava K, Kaartinen M, Utriainen M, Happonen I, Hänninen ML. Helicobacter salomonis sp. nov., a canine gastric Helicobacter sp. related to Helicobacter felis and Helicobacter bizzozeronii. Int J Syst Bacteriol. 1997;47:975–982. doi: 10.1099/00207713-47-4-975. [DOI] [PubMed] [Google Scholar]
- 34.Mendes EN, Queiroz DM, Dewhirst FE, Paster BJ, Moura SB, Fox JG. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Bacteriol. 1996;46:916–921. doi: 10.1099/00207713-46-4-916. [DOI] [PubMed] [Google Scholar]
- 35.Trivett-Moore NL, Rawlinson WD, Yuen M, Gilbert GL. Helicobacter westmeadii sp. nov., a new species isolated from blood cultures of two AIDS patients. J Clin Microbiol. 1997;35:1144–1150. doi: 10.1128/jcm.35.5.1144-1150.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Schauer DB, Ghori N, Falkow S. Isolation and characterization of "Flexispira rappini" from laboratory mice. J Clin Microbiol. 1993;31:2709–2714. doi: 10.1128/jcm.31.10.2709-2714.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388:539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]