The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases (original) (raw)
Abstract
Fragments of fibronectin occur naturally in vivo and are increased in the synovial fluid of arthritis patients. We have studied the 45 kDa fragment (Fn-f 45), representing the N-terminal collagen-binding domain of fibronectin, for its ability to modulate the expression of metalloproteinases by porcine articular chondrocytes in vitro. We report that stimulation of cultured chondrocytes, or cartilage explants, with Fn-f 45 increased the levels of matrix metalloproteinase-13 (MMP-13; collagenase-3) released into the conditioned medium in a dose-dependent manner. Increased levels of MMP-13 were due to stimulation of MMP-13 synthesis, rather than release of MMP-13 from accumulated matrix stores. Fn-f 45 also stimulated the synthesis of MMP-3 (stromelysin-1) from cultured chondrocytes and cartilage cultures. The Fn-f 45-induced increase in MMP-3 and MMP-13 synthesis occurred via an interleukin 1-independent mechanism, since the receptor antagonist of interleukin-1 was unable to block the increased synthesis. The gelatinases, MMP-2 and MMP-9, were not modulated by Fn-f 45 in these culture systems. Fn-f 45 also stimulated the release of aggrecan from cartilage explants into conditioned medium. Neoepitope antibodies specific for aggrecan fragments generated by MMPs or aggrecanases showed that the Fn-f 45-induced aggrecan loss was mediated by aggrecanases, and not by MMPs. Extracts of cultured cartilage contained elevated levels of the aggrecanase-derived ITEGE(373)-G1 domain, whereas levels of the matrix metalloproteinase-derived DIPEN(341)-G1 domain were unchanged. These studies show that Fn-f 45 can induce a catabolic phenotype in articular chondrocytes by up-regulating the expression of metalloproteinases specific for the degradation of collagen and aggrecan.
Full Text
The Full Text of this article is available as a PDF (264.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem. 1999 Aug 13;274(33):23443–23450. doi: 10.1074/jbc.274.33.23443. [DOI] [PubMed] [Google Scholar]
- Akimov S. S., Krylov D., Fleischman L. F., Belkin A. M. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol. 2000 Feb 21;148(4):825–838. doi: 10.1083/jcb.148.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allan J. A., Hembry R. M., Angal S., Reynolds J. J., Murphy G. Binding of latent and high Mr active forms of stromelysin to collagen is mediated by the C-terminal domain. J Cell Sci. 1991 Aug;99(Pt 4):789–795. doi: 10.1242/jcs.99.4.789. [DOI] [PubMed] [Google Scholar]
- Arner E. C., Tortorella M. D. Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum. 1995 Sep;38(9):1304–1314. doi: 10.1002/art.1780380919. [DOI] [PubMed] [Google Scholar]
- Bewsey K. E., Wen C., Purple C., Homandberg G. A. Fibronectin fragments induce the expression of stromelysin-1 mRNA and protein in bovine chondrocytes in monolayer culture. Biochim Biophys Acta. 1996 Oct 7;1317(1):55–64. doi: 10.1016/0925-4439(96)00037-3. [DOI] [PubMed] [Google Scholar]
- Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Rorabeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997 Apr 1;99(7):1534–1545. doi: 10.1172/JCI119316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton-Wurster N., Lust G., Macleod J. N. Cartilage fibronectin isoforms: in search of functions for a special population of matrix glycoproteins. Matrix Biol. 1997 Mar;15(7):441–454. doi: 10.1016/s0945-053x(97)90018-4. [DOI] [PubMed] [Google Scholar]
- Carney S. L., Bayliss M. T., Collier J. M., Muir H. Electrophoresis of 35S-labeled proteoglycans on polyacrylamide-agarose composite gels and their visualization by fluorography. Anal Biochem. 1986 Jul;156(1):38–44. doi: 10.1016/0003-2697(86)90150-8. [DOI] [PubMed] [Google Scholar]
- Caterson B., Flannery C. R., Hughes C. E., Little C. B. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 2000 Aug;19(4):333–344. doi: 10.1016/s0945-053x(00)00078-0. [DOI] [PubMed] [Google Scholar]
- Chevalier X., Groult N., Emod I., Planchenault T. Proteoglycan-degrading activity associated with the 40 kDa collagen-binding fragment of fibronectin. Br J Rheumatol. 1996 Jun;35(6):506–514. doi: 10.1093/rheumatology/35.6.506. [DOI] [PubMed] [Google Scholar]
- Cowell S., Knäuper V., Stewart M. L., D'Ortho M. P., Stanton H., Hembry R. M., López-Otín C., Reynolds J. J., Murphy G. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J. 1998 Apr 15;331(Pt 2):453–458. doi: 10.1042/bj3310453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlberg L., Billinghurst R. C., Manner P., Nelson F., Webb G., Ionescu M., Reiner A., Tanzer M., Zukor D., Chen J. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthritis Rheum. 2000 Mar;43(3):673–682. doi: 10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- Dzamba B. J., Bultmann H., Akiyama S. K., Peters D. M. Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem. 1994 Jul 29;269(30):19646–19652. [PubMed] [Google Scholar]
- Farndale R. W., Sayers C. A., Barrett A. J. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9(4):247–248. doi: 10.3109/03008208209160269. [DOI] [PubMed] [Google Scholar]
- Flannery C. R., Little C. B., Hughes C. E., Caterson B. Expression of ADAMTS homologues in articular cartilage. Biochem Biophys Res Commun. 1999 Jul 5;260(2):318–322. doi: 10.1006/bbrc.1999.0909. [DOI] [PubMed] [Google Scholar]
- Fosang A. J., Last K., Gardiner P., Jackson D. C., Brown L. Development of a cleavage-site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem J. 1995 Aug 15;310(Pt 1):337–343. doi: 10.1042/bj3100337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fosang A. J., Last K., Knäuper V., Murphy G., Neame P. J. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 1996 Feb 12;380(1-2):17–20. doi: 10.1016/0014-5793(95)01539-6. [DOI] [PubMed] [Google Scholar]
- Fosang A. J., Last K., Stanton H., Weeks D. B., Campbell I. K., Hardingham T. E., Hembry R. M. Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants. J Biol Chem. 2000 Oct 20;275(42):33027–33037. doi: 10.1074/jbc.M910207199. [DOI] [PubMed] [Google Scholar]
- Fukai F., Ohtaki M., Fujii N., Yajima H., Ishii T., Nishizawa Y., Miyazaki K., Katayama T. Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry. 1995 Sep 12;34(36):11453–11459. doi: 10.1021/bi00036a018. [DOI] [PubMed] [Google Scholar]
- Griffiths A. M., Herbert K. E., Perrett D., Scott D. L. Fragmented fibronectin and other synovial fluid proteins in chronic arthritis: their relation to immune complexes. Clin Chim Acta. 1989 Sep 29;184(2):133–146. doi: 10.1016/0009-8981(89)90283-0. [DOI] [PubMed] [Google Scholar]
- Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Davis G., Maniglia C., Shrikhande A. Cartilage chondrolysis by fibronectin fragments causes cleavage of aggrecan at the same site as found in osteoarthritic cartilage. Osteoarthritis Cartilage. 1997 Nov;5(6):450–453. doi: 10.1016/s1063-4584(97)80049-0. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Hui F. Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments. Arch Biochem Biophys. 1996 Oct 15;334(2):325–331. doi: 10.1006/abbi.1996.0461. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Hui F., Wen C., Purple C., Bewsey K., Koepp H., Huch K., Harris A. Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J. 1997 Feb 1;321(Pt 3):751–757. doi: 10.1042/bj3210751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homandberg G. A., Meyers R., Williams J. M. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol. 1993 Aug;20(8):1378–1382. [PubMed] [Google Scholar]
- Homandberg G. A., Meyers R., Xie D. L. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem. 1992 Feb 25;267(6):3597–3604. [PubMed] [Google Scholar]
- Homandberg G. A. Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci. 1999 Oct 15;4:D713–D730. doi: 10.2741/homandberg. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Wen C., Hui F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage. 1998 Jul;6(4):231–244. doi: 10.1053/joca.1998.0116. [DOI] [PubMed] [Google Scholar]
- Kang Y., Eger W., Koepp H., Williams J. M., Kuettner K. E., Homandberg G. A. Hyaluronan suppresses fibronectin fragment-mediated damage to human cartilage explant cultures by enhancing proteoglycan synthesis. J Orthop Res. 1999 Nov;17(6):858–869. doi: 10.1002/jor.1100170611. [DOI] [PubMed] [Google Scholar]
- Kheradmand F., Werner E., Tremble P., Symons M., Werb Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science. 1998 May 8;280(5365):898–902. doi: 10.1126/science.280.5365.898. [DOI] [PubMed] [Google Scholar]
- Knäuper V., Will H., López-Otin C., Smith B., Atkinson S. J., Stanton H., Hembry R. M., Murphy G. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem. 1996 Jul 19;271(29):17124–17131. doi: 10.1074/jbc.271.29.17124. [DOI] [PubMed] [Google Scholar]
- Koklitis P. A., Murphy G., Sutton C., Angal S. Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low-Mr active forms, and a comparison of recombinant with natural stromelysin activities. Biochem J. 1991 May 15;276(Pt 1):217–221. doi: 10.1042/bj2760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mercuri F. A., Doege K. J., Arner E. C., Pratta M. A., Last K., Fosang A. J. Recombinant human aggrecan G1-G2 exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J Biol Chem. 1999 Nov 5;274(45):32387–32395. doi: 10.1074/jbc.274.45.32387. [DOI] [PubMed] [Google Scholar]
- Mitchell P. G., Magna H. A., Reeves L. M., Lopresti-Morrow L. L., Yocum S. A., Rosner P. J., Geoghegan K. F., Hambor J. E. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996 Feb 1;97(3):761–768. doi: 10.1172/JCI118475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G., Knäuper V. Relating matrix metalloproteinase structure to function: why the "hemopexin" domain? Matrix Biol. 1997 Mar;15(8-9):511–518. doi: 10.1016/s0945-053x(97)90025-1. [DOI] [PubMed] [Google Scholar]
- Murphy G., Stanton H., Cowell S., Butler G., Knäuper V., Atkinson S., Gavrilovic J. Mechanisms for pro matrix metalloproteinase activation. APMIS. 1999 Jan;107(1):38–44. doi: 10.1111/j.1699-0463.1999.tb01524.x. [DOI] [PubMed] [Google Scholar]
- Smilenov L., Forsberg E., Zeligman I., Sparrman M., Johansson S. Separation of fibronectin from a plasma gelatinase using immobilized metal affinity chromatography. FEBS Lett. 1992 May 18;302(3):227–230. doi: 10.1016/0014-5793(92)80447-o. [DOI] [PubMed] [Google Scholar]
- Springman E. B., Angleton E. L., Birkedal-Hansen H., Van Wart H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364–368. doi: 10.1073/pnas.87.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang B. L. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol. 2001 Jan;33(1):33–44. doi: 10.1016/s1357-2725(00)00061-3. [DOI] [PubMed] [Google Scholar]
- Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science. 1999 Jun 4;284(5420):1664–1666. doi: 10.1126/science.284.5420.1664. [DOI] [PubMed] [Google Scholar]
- Tortorella M. D., Pratta M., Liu R. Q., Austin J., Ross O. H., Abbaszade I., Burn T., Arner E. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem. 2000 Jun 16;275(24):18566–18573. doi: 10.1074/jbc.M909383199. [DOI] [PubMed] [Google Scholar]
- Unger J., Tschesche H. The proteolytic activity and cleavage specificity of fibronectin-gelatinase and fibronectin-lamininase. J Protein Chem. 1999 May;18(4):403–411. doi: 10.1023/a:1020684508212. [DOI] [PubMed] [Google Scholar]
- Vankemmelbeke M. N., Holen I., Wilson A. G., Ilic M. Z., Handley C. J., Kelner G. S., Clark M., Liu C., Maki R. A., Burnett D. Expression and activity of ADAMTS-5 in synovium. Eur J Biochem. 2001 Mar;268(5):1259–1268. doi: 10.1046/j.1432-1327.2001.01990.x. [DOI] [PubMed] [Google Scholar]
- Werb Z., Tremble P. M., Behrendtsen O., Crowley E., Damsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989 Aug;109(2):877–889. doi: 10.1083/jcb.109.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie D. L., Meyers R., Homandberg G. A. Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol. 1992 Sep;19(9):1448–1452. [PubMed] [Google Scholar]