Analysis of the Expression of Anthocyanin Pathway Genes in Developing Vitis vinifera L. cv Shiraz Grape Berries and the Implications for Pathway Regulation (original) (raw)
Abstract
Anthocyanin synthesis in Vitis vinifera L. cv Shiraz grape berries began 10 weeks postflowering and continued throughout berry ripening. Expression of seven genes of the anthocyanin biosynthetic pathway (phenylalanine ammonia lyase [PAL], chalcone synthase [CHS], chalcone isomerase [CHI], flavanone-3-hydroxylase [F3H], dihydroflavonol 4-reductase [DFR], leucoanthocyanidin dioxygen-ase [LDOX], and UDP glucose-flavonoid 3-o-glucosyl transferase [UFGT]) was determined. In flowers and grape berry skins, expression of all of the genes, except UFGT, was detected up to 4 weeks postflowering, followed by a reduction in this expression 6 to 8 weeks postflowering. Expression of CHS, CHI, F3H, DFR, LDOX, and UFGT then increased 10 weeks postflowering, coinciding with the onset of anthocyanin synthesis. In grape berry flesh, no PAL or UFGT expression was detected at any stage of development, but CHS, CHI, F3H, DFR, and LDOX were expressed up to 4 weeks postflowering. These results indicate that the onset of anthocyanin synthesis in ripening grape berry skins coincides with a coordinated increase in expression of a number of genes in the anthocyanin biosynthetic pathway, suggesting the involvement of regulatory genes. UFGT is regulated independently of the other genes, suggesting that in grapes the major control point in this pathway is later than that observed in maize, petunia, and snapdragon.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida J., Carpenter R., Robbins T. P., Martin C., Coen E. S. Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev. 1989 Nov;3(11):1758–1767. doi: 10.1101/gad.3.11.1758. [DOI] [PubMed] [Google Scholar]
- Beld M., Martin C., Huits H., Stuitje A. R., Gerats A. G. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol. 1989 Nov;13(5):491–502. doi: 10.1007/BF00027309. [DOI] [PubMed] [Google Scholar]
- Cone K. C., Burr F. A., Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9631–9635. doi: 10.1073/pnas.83.24.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooner H. K., Nelson O. E. Genetic control of UDPglucose:flavonol 3-O-glucosyltransferase in the endosperm of maize. Biochem Genet. 1977 Jun;15(5-6):509–519. doi: 10.1007/BF00520194. [DOI] [PubMed] [Google Scholar]
- Goodrich J., Carpenter R., Coen E. S. A common gene regulates pigmentation pattern in diverse plant species. Cell. 1992 Mar 6;68(5):955–964. doi: 10.1016/0092-8674(92)90038-e. [DOI] [PubMed] [Google Scholar]
- Koes R. E., Van Blokland R., Quattrocchio F., Van Tunen A. J., Mol JNM. Chalcone Synthase Promoters in Petunia Are Active in Pigmented and Unpigmented Cell Types. Plant Cell. 1990 May;2(5):379–392. doi: 10.1105/tpc.2.5.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
- Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. doi: 10.1073/pnas.86.18.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig S. R., Wessler S. R. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell. 1990 Sep 7;62(5):849–851. doi: 10.1016/0092-8674(90)90259-h. [DOI] [PubMed] [Google Scholar]
- Martin C., Prescott A., Mackay S., Bartlett J., Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1991 Jul;1(1):37–49. doi: 10.1111/j.1365-313x.1991.00037.x. [DOI] [PubMed] [Google Scholar]
- Paz-Ares J., Ghosal D., Wienand U., Peterson P. A., Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987 Dec 1;6(12):3553–3558. doi: 10.1002/j.1460-2075.1987.tb02684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quattrocchio F., Wing J. F., Leppen HTC., Mol JNM., Koes R. E. Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes. Plant Cell. 1993 Nov;5(11):1497–1512. doi: 10.1105/tpc.5.11.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rezaian M. A., Krake L. R. Nucleic acid extraction and virus detection in grapevine. J Virol Methods. 1987 Sep;17(3-4):277–285. doi: 10.1016/0166-0934(87)90137-6. [DOI] [PubMed] [Google Scholar]
- Schmelzer E., Jahnen W., Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A. 1988 May;85(9):2989–2993. doi: 10.1073/pnas.85.9.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparvoli F., Martin C., Scienza A., Gavazzi G., Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol. 1994 Mar;24(5):743–755. doi: 10.1007/BF00029856. [DOI] [PubMed] [Google Scholar]