Cytosolic calcium increase in coronary endothelial cells after H2O2 exposure and the inhibitory effect of U78517F (original) (raw)
Abstract
1. Cytosolic calcium concentrations ([Ca2+]i) were determined with fura-2 on both resting (unstimulated) and A23187-stimulated coronary endothelial cells following injury by hydrogen peroxide (H2O2). 2. Treatment of cells with H2O2 (10(-4) M) caused an increase in the resting [Ca2+]i, which reached a maximum of five fold after 3 h. 3. The increase in resting [Ca2+]i was significantly attenuated by treatment with U78517F, a potent inhibitor of lipid peroxidation, at a concentration of 10(-6) M or greater. Catalase (50 u ml-1) also markedly inhibited the H2O2-induced rise in [Ca2+]i. Pretreatment with verapamil (10(-5) M), nifedipine (10(-6) M) or diltiazem (10(-5) M) had no effect on the increase in [Ca2+]i following addition of H2O2. 4. A23187 produced a transient increase in [Ca2+]i followed by a sustained plateau. The initial peak and plateau phase responses to A23187 were augmented by H2O2. This augmentation of [Ca2+]i was suppressed by U78517F or catalase but not by Ca-entry blockers. 5. Thus, it is likely that lipid peroxidation plays a critical role in the sustained increase in [Ca2+]i that occurs following treatment with H2O2 and that this continues in the presence of agonists which stimulate the endothelium. Voltage-gated Ca2+ channels do not seem to be involved in the genesis of cellular damage associated with sustained large increases in [Ca2+]i.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acosta D., Li C. P. Injury to primary cultures of rat heart endothelial cells by hypoxia and glucose deprivation. In Vitro. 1979 Nov;15(11):929–934. doi: 10.1007/BF02618051. [DOI] [PubMed] [Google Scholar]
- Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
- Braughler J. M., Burton P. S., Chase R. L., Pregenzer J. F., Jacobsen E. J., VanDoornik F. J., Tustin J. M., Ayer D. E., Bundy G. L. Novel membrane localized iron chelators as inhibitors of iron-dependent lipid peroxidation. Biochem Pharmacol. 1988 Oct 15;37(20):3853–3860. doi: 10.1016/0006-2952(88)90066-4. [DOI] [PubMed] [Google Scholar]
- Brigham K. L., Meyrick B., Berry L. C., Jr, Repine J. E. Antioxidants protect cultured bovine lung endothelial cells from injury by endotoxin. J Appl Physiol (1985) 1987 Aug;63(2):840–850. doi: 10.1152/jappl.1987.63.2.840. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Abrams J., Serroni A., Martin J. T., Farber J. L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978 Jul 10;253(13):4809–4817. [PubMed] [Google Scholar]
- Förstermann U., Mügge A., Alheid U., Haverich A., Frölich J. C. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res. 1988 Feb;62(2):185–190. doi: 10.1161/01.res.62.2.185. [DOI] [PubMed] [Google Scholar]
- Granger D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol. 1988 Dec;255(6 Pt 2):H1269–H1275. doi: 10.1152/ajpheart.1988.255.6.H1269. [DOI] [PubMed] [Google Scholar]
- Grisham M. B., Granger D. N. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988 Mar;33(3 Suppl):6S–15S. doi: 10.1007/BF01538126. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gutteridge J. M., Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci. 1990 Apr;15(4):129–135. doi: 10.1016/0968-0004(90)90206-q. [DOI] [PubMed] [Google Scholar]
- Hall E. D., Braughler J. M., Yonkers P. A., Smith S. L., Linseman K. L., Means E. D., Scherch H. M., Von Voigtlander P. F., Lahti R. A., Jacobsen E. J. U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther. 1991 Aug;258(2):688–694. [PubMed] [Google Scholar]
- Harlan J. M., Levine J. D., Callahan K. S., Schwartz B. R., Harker L. A. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest. 1984 Mar;73(3):706–713. doi: 10.1172/JCI111263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi S., Toda N. Inhibition by Cd2+ verapamil and papaverine of Ca2+-induced contractions in isolated cerebral and peripheral arteries of the dog. Br J Pharmacol. 1977 May;60(1):35–43. doi: 10.1111/j.1476-5381.1977.tb16744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman B., Gores G. J., Nieminen A. L., Kawanishi T., Harman A., Lemasters J. J. Calcium and pH in anoxic and toxic injury. Crit Rev Toxicol. 1990;21(2):127–148. doi: 10.3109/10408449009089876. [DOI] [PubMed] [Google Scholar]
- Itoh T., Kanmura Y., Kuriyama H. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery. J Physiol. 1985 Feb;359:467–484. doi: 10.1113/jphysiol.1985.sp015597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayakody R. L., Kappagoda C. T., Senaratne M. P., Sreeharan N. Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta. Br J Pharmacol. 1987 May;91(1):155–164. doi: 10.1111/j.1476-5381.1987.tb08994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotasek D., Vercellotti G. M., Ochoa A. C., Bach F. H., White J. G., Jacob H. S. Mechanism of cultured endothelial injury induced by lymphokine-activated killer cells. Cancer Res. 1988 Oct 1;48(19):5528–5532. [PubMed] [Google Scholar]
- Kvietys P. R., Inauen W., Bacon B. R., Grisham M. B. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical. Am J Physiol. 1989 Nov;257(5 Pt 2):H1640–H1646. doi: 10.1152/ajpheart.1989.257.5.H1640. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Pohl U., Mülsch A., Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988 Sep;95(1):189–196. doi: 10.1111/j.1476-5381.1988.tb16564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machlin L. J., Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987 Dec;1(6):441–445. [PubMed] [Google Scholar]
- Mayhan W. G. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol. 1989 Mar;256(3 Pt 2):H621–H625. doi: 10.1152/ajpheart.1989.256.3.H621. [DOI] [PubMed] [Google Scholar]
- Mehta J. L., Nichols W. W., Donnelly W. H., Lawson D. L., Saldeen T. G. Impaired canine coronary vasodilator response to acetylcholine and bradykinin after occlusion-reperfusion. Circ Res. 1989 Jan;64(1):43–54. doi: 10.1161/01.res.64.1.43. [DOI] [PubMed] [Google Scholar]
- Morgan-Boyd R., Stewart J. M., Vavrek R. J., Hassid A. Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C588–C598. doi: 10.1152/ajpcell.1987.253.4.C588. [DOI] [PubMed] [Google Scholar]
- Nicotera P., Hartzell P., Baldi C., Svensson S. A., Bellomo G., Orrenius S. Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system. J Biol Chem. 1986 Nov 5;261(31):14628–14635. [PubMed] [Google Scholar]
- Nicotera P., McConkey D., Svensson S. A., Bellomo G., Orrenius S. Correlation between cytosolic Ca2+ concentration and cytotoxicity in hepatocytes exposed to oxidative stress. Toxicology. 1988 Nov 14;52(1-2):55–63. doi: 10.1016/0300-483x(88)90196-5. [DOI] [PubMed] [Google Scholar]
- Nicotera P., Moore M., Mirabelli F., Bellomo G., Orrenius S. Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols. FEBS Lett. 1985 Feb 11;181(1):149–153. doi: 10.1016/0014-5793(85)81131-5. [DOI] [PubMed] [Google Scholar]
- Peach M. J., Singer H. A., Izzo N. J., Jr, Loeb A. L. Role of calcium in endothelium-dependent relaxation of arterial smooth muscle. Am J Cardiol. 1987 Jan 23;59(2):35A–43A. doi: 10.1016/0002-9149(87)90174-3. [DOI] [PubMed] [Google Scholar]
- Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
- Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilling W. P., Ritchie A. K., Navarro L. T., Eskin S. G. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells. Am J Physiol. 1988 Aug;255(2 Pt 2):H219–H227. doi: 10.1152/ajpheart.1988.255.2.H219. [DOI] [PubMed] [Google Scholar]
- Spedding M., Schini V., Schoeffter P., Miller R. C. Calcium channel activation does not increase release of endothelial-derived relaxant factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in smooth muscle. J Cardiovasc Pharmacol. 1986 Nov-Dec;8(6):1130–1137. doi: 10.1097/00005344-198611000-00006. [DOI] [PubMed] [Google Scholar]
- Spragg R. G., Hinshaw D. B., Hyslop P. A., Schraufstätter I. U., Cochrane C. G. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury. J Clin Invest. 1985 Oct;76(4):1471–1476. doi: 10.1172/JCI112126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starke P. E., Hoek J. B., Farber J. L. Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes. J Biol Chem. 1986 Mar 5;261(7):3006–3012. [PubMed] [Google Scholar]
- Steinberg S. F., Bilezikian J. P., Al-Awqati Q. Fura-2 fluorescence is localized to mitochondria in endothelial cells. Am J Physiol. 1987 Nov;253(5 Pt 1):C744–C747. doi: 10.1152/ajpcell.1987.253.5.C744. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]