Tracing Cell Wall Biogenesis in Intact Cells and Plants : Selective Turnover and Alteration of Soluble and Cell Wall Polysaccharides in Grasses (original) (raw)

Abstract

Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development.

551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke D., Kaufman P., McNeil M., Albersheim P. The Structure of Plant Cell Walls: VI. A Survey of the Walls of Suspension-cultured Monocots. Plant Physiol. 1974 Jul;54(1):109–115. doi: 10.1104/pp.54.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpita N. C., Brown R. A., Weller K. M. Uptake and Metabolic Fate of Glucose, Arabinose, and Xylose by Zea mays Coleoptiles in Relation to Cell Wall Synthesis. Plant Physiol. 1982 May;69(5):1173–1180. doi: 10.1104/pp.69.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpita N. C. Cell wall development in maize coleoptiles. Plant Physiol. 1984 Sep;76(1):205–212. doi: 10.1104/pp.76.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpita N. C. Hemicellulosic polymers of cell walls of zea coleoptiles. Plant Physiol. 1983 Jun;72(2):515–521. doi: 10.1104/pp.72.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpita N. C. Incorporation of proline and aromatic amino acids into cell walls of maize coleoptiles. Plant Physiol. 1986 Mar;80(3):660–666. doi: 10.1104/pp.80.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpita N. C., Kanabus J. Chemical structure of the cell walls of dwarf maize and changes mediated by gibberellin. Plant Physiol. 1988 Nov;88(3):671–678. doi: 10.1104/pp.88.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpita N. C., Kanabus J. Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Anal Biochem. 1987 Feb 15;161(1):132–139. doi: 10.1016/0003-2697(87)90662-2. [DOI] [PubMed] [Google Scholar]
  8. Carpita N. C., Mulligan J. A., Heyser J. W. Hemicelluloses of cell walls of a proso millet cell suspension culture. Plant Physiol. 1985 Oct;79(2):480–484. doi: 10.1104/pp.79.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cleland R., Olson A. C. Metabolism of free hydroxyproline in Avena coleoptiles. Biochemistry. 1967 Jan;6(1):32–36. doi: 10.1021/bi00853a007. [DOI] [PubMed] [Google Scholar]
  10. Gibeaut D. M., Karuppiah N., Chang S-R, Brock T. G., Vadlamudi B., Kim D., Ghosheh N. S., Rayle D. L., Carpita N. C., Kaufman P. B. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa). Plant Physiol. 1990 Oct;94(2):411–416. doi: 10.1104/pp.94.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayashi T., Wong Y. S., Maclachlan G. Pea Xyloglucan and Cellulose : II. Hydrolysis by Pea Endo-1,4-beta-Glucanases. Plant Physiol. 1984 Jul;75(3):605–610. doi: 10.1104/pp.75.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson K. D., Daniels D., Dowler M. J., Rayle D. L. Activation of Avena coleoptile cell wall glycosidases by hydrogen ions and auxin. Plant Physiol. 1974 Feb;53(2):224–228. doi: 10.1104/pp.53.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kato Y., Nevins D. J. Enzymic Dissociation of Zea Shoot Cell Wall Polysaccharides : II. Dissociation of (1 --> 3),(1 --> 4)-beta-d-Glucan by Purified (1 --> 3),(1 --> 4)-beta-d-Glucan 4-Glucanohydrolase from Bacillus subtilis. Plant Physiol. 1984 Jul;75(3):745–752. doi: 10.1104/pp.75.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kutschera U., Briggs W. R. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes. Proc Natl Acad Sci U S A. 1987 May;84(9):2747–2751. doi: 10.1073/pnas.84.9.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee S. H., Kivilaan A., Bandurski R. S. In vitro autolysis of plant cell walls. Plant Physiol. 1967 Jul;42(7):968–972. doi: 10.1104/pp.42.7.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loescher W., Nevins D. J. Auxin-induced Changes in Avena Coleoptile Cell Wall Composition. Plant Physiol. 1972 Nov;50(5):556–563. doi: 10.1104/pp.50.5.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishitani K., Nevins D. J. Enzymic Analysis of Feruloylated Arabinoxylans (Feraxan) Derived from Zea mays Cell Walls : III. Structural Changes in the Feraxan during Coleoptile Elongation. Plant Physiol. 1990 Jun;93(2):396–402. doi: 10.1104/pp.93.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vanderhoef L. N., Dute R. R. Auxin-regulated Wall Loosening and Sustained Growth in Elongation. Plant Physiol. 1981 Jan;67(1):146–149. doi: 10.1104/pp.67.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]