Copper-induced activation of aortic lysyl oxidase in vivo (original) (raw)

Abstract

Raising day-old chicks on diets lacking copper severely depressed the activity of lysyl oxidase, a copper metalloenzyme in connective tissue. Administration of CuSO4 either through the diet or through intraperitoneal injections restored the lysyl oxidase activity in aortic tissue. Two hours after the chicks received CuSO4 (1 mg/kg) the activity of lysyl oxidase rose rapidly to attain, within 4-6 hr, a new steady-state level which was five to 20 times higher than the basal (saline-injected) activity. Twenty hours after copper administration, activity was still higher, in some experiments double that achieved at 6 hr. Very low amounts of cycloheximide injected intraperitoneally 45 min before and 3 hr after copper suppressed the activation response by two-thirds. Cycloheximide given 2 or 4 hr after the copper was only one-half as effective. Actinomycin D caused only a 10-15% inhibition of the copper-induced activation. The data suggest that copper is a key regulator of lysyl oxidase activity in aorta and may in fact be a major determinant of the steady-state levels of the enzyme in that tissue.

371

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chou W. S., Savage J. E., O'Dell B. L. Role of copper in biosynthesis of intramolecular cross-links in chick tendon collagen. J Biol Chem. 1969 Nov 10;244(21):5785–5789. [PubMed] [Google Scholar]
  2. Drysdale J. W., Munro H. N. Regulation of synthesis and turnover of ferritin in rat liver. J Biol Chem. 1966 Aug 10;241(15):3630–3637. [PubMed] [Google Scholar]
  3. Evans J. L., Abraham P. A. Anemia, iron storage and ceruloplasmin in copper nutrition in the growing rat. J Nutr. 1973 Feb;103(2):196–201. doi: 10.1093/jn/103.2.196. [DOI] [PubMed] [Google Scholar]
  4. FINEBERG R. A., GREENBERG D. M. Ferritin biosynthesis. III. Apoferritin, the initial product. J Biol Chem. 1955 May;214(1):107–113. [PubMed] [Google Scholar]
  5. Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
  6. Harris E. D., Gonnerman W. A., Savage J. E., O'Dell B. L. Connective tissue amine oxidase. II. Purification and partial characterization of lysyl oxidase from chick aorta. Biochim Biophys Acta. 1974 Apr 25;341(2):332–344. doi: 10.1016/0005-2744(74)90226-5. [DOI] [PubMed] [Google Scholar]
  7. Harris E. D., O'Dell B. L. Copper and amine oxidases in connective tissue metabolism. Adv Exp Med Biol. 1974;48(0):267–284. doi: 10.1007/978-1-4684-0943-7_13. [DOI] [PubMed] [Google Scholar]
  8. Holtzman N. A., Gaumnitz B. M. Studies on the rate of release and turnover of ceruloplasmin and apoceruloplasmin in rat plasma. J Biol Chem. 1970 May 10;245(9):2354–2358. [PubMed] [Google Scholar]
  9. Kagan H. M., Hewitt N. A., Salcedo L. L., Franzblau C. Catalytic activity of aortic lysyl oxidase in an insoluble enzyme-substrate complex. Biochim Biophys Acta. 1974 Sep 13;365(1):223–234. doi: 10.1016/0005-2795(74)90267-0. [DOI] [PubMed] [Google Scholar]
  10. Marceau N., Aspin N. The intracellular distribution of the radiocopper derived from ceruloplasmin and from albumin. Biochim Biophys Acta. 1973 Dec 6;328(2):338–350. doi: 10.1016/0005-2795(73)90267-5. [DOI] [PubMed] [Google Scholar]
  11. Narayanan A. S., Siegel R. C., Martin G. R. Stability and purification of lysyl oxidase. Arch Biochem Biophys. 1974 May;162(1):231–237. doi: 10.1016/0003-9861(74)90123-4. [DOI] [PubMed] [Google Scholar]
  12. O'Dell B. L., Bird D. W., Ruggles D. L., Savage J. E. Composition of aortic tissue from copper-deficient chicks. J Nutr. 1966 Jan;88(1):9–14. doi: 10.1093/jn/88.1.9. [DOI] [PubMed] [Google Scholar]
  13. Owen C. A., Jr Metabolism of radiocopper (Cu64) in the rat. Am J Physiol. 1965 Nov;209(5):900–904. doi: 10.1152/ajplegacy.1965.209.5.900. [DOI] [PubMed] [Google Scholar]
  14. Pinnell S. R., Martin G. R. The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sci U S A. 1968 Oct;61(2):708–716. doi: 10.1073/pnas.61.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards M. P., Cousins R. J. Influence of parenteral zinc and actinomycin D on tissue zinc uptake and the synthesis of a zinc - binding protein. Bioinorg Chem. 1975 Apr;4(3):215–224. doi: 10.1016/s0006-3061(00)80104-0. [DOI] [PubMed] [Google Scholar]
  16. Riordan J. F., Vallee B. L. The functional roles of metals in metalloenzymes. Adv Exp Med Biol. 1974;48(0):33–57. doi: 10.1007/978-1-4684-0943-7_2. [DOI] [PubMed] [Google Scholar]
  17. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  18. Siegel R. C., Pinnell S. R., Martin G. R. Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry. 1970 Nov 10;9(23):4486–4492. doi: 10.1021/bi00825a004. [DOI] [PubMed] [Google Scholar]
  19. Yeh S. D., Shils M. E. Quantitive aspects of cycloheximide inhibition of amino acid incorporation. Biochem Pharmacol. 1969 Aug;18(8):1919–1926. doi: 10.1016/0006-2952(69)90287-1. [DOI] [PubMed] [Google Scholar]