Pancreatic tumor pathogenesis reflects the causative genetic lesion (original) (raw)

Abstract

Transgenic mice in which c-myc expression is targeted to pancreatic acinar cells develop mixed acinar/ductal pancreatic adenocarcinomas between 2 and 7 months of age. This contrasts with the effect on pancreas of the simian virus 40 tumor antigen or activated ras, which in adult mice causes lesions composed exclusively of acinar-like cells. Furthermore, during an early stage of myc-induced pathology, transformed acinar-derived cells appear within islets, suggesting that islet hormones may influence the progression of these exocrine pancreatic tumors. These findings demonstrate that the initial oncogenic alteration can influence the pattern of subsequent tumor pathogenesis and, given that human exocrine pancreatic tumors are predominantly ductal adenocarcinomas, support the suggestion that transformed acinar cells may contribute to the genesis of this serious disease in man.

93

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres A. C., van der Valk M. A., Schönenberger C. A., Flückiger F., LeMeur M., Gerlinger P., Groner B. Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev. 1988 Nov;2(11):1486–1495. doi: 10.1101/gad.2.11.1486. [DOI] [PubMed] [Google Scholar]
  2. Bernard O., Cory S., Gerondakis S., Webb E., Adams J. M. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 1983;2(12):2375–2383. doi: 10.1002/j.1460-2075.1983.tb01749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  4. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., Palmiter R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. doi: 10.1073/pnas.82.13.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cole M. D. The myc oncogene: its role in transformation and differentiation. Annu Rev Genet. 1986;20:361–384. doi: 10.1146/annurev.ge.20.120186.002045. [DOI] [PubMed] [Google Scholar]
  6. Durnam D. M., Palmiter R. D. A practical approach for quantitating specific mRNAs by solution hybridization. Anal Biochem. 1983 Jun;131(2):385–393. doi: 10.1016/0003-2697(83)90188-4. [DOI] [PubMed] [Google Scholar]
  7. Flaks B. Histogenesis of pancreatic carcinogenesis in the hamster: ultrastructural evidence. Environ Health Perspect. 1984 Jun;56:187–203. doi: 10.1289/ehp.8456187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fredrickson T. N., Hartley J. W., Wolford N. K., Resau J. H., Rapp U. R., Morse H. C., 3rd Histogenesis and clonality of pancreatic tumors induced by v-myc and v-raf oncogenes in NFS/N mice. Am J Pathol. 1988 Jun;131(3):444–451. [PMC free article] [PubMed] [Google Scholar]
  9. Githens S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J Pediatr Gastroenterol Nutr. 1988 Jul-Aug;7(4):486–506. [PubMed] [Google Scholar]
  10. Hanahan D. Transgenic mice as probes into complex systems. Science. 1989 Dec 8;246(4935):1265–1275. doi: 10.1126/science.2686032. [DOI] [PubMed] [Google Scholar]
  11. Jones T. R., Cole M. D. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3' untranslated sequences. Mol Cell Biol. 1987 Dec;7(12):4513–4521. doi: 10.1128/mcb.7.12.4513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morohoshi T., Kanda M., Horie A., Chott A., Dreyer T., Klöppel G., Heitz P. U. Immunocytochemical markers of uncommon pancreatic tumors. Acinar cell carcinoma, pancreatoblastoma, and solid cystic (papillary-cystic) tumor. Cancer. 1987 Feb 15;59(4):739–747. doi: 10.1002/1097-0142(19870215)59:4<739::aid-cncr2820590413>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  13. Nicolson G. L. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res. 1987 Mar 15;47(6):1473–1487. [PubMed] [Google Scholar]
  14. Nowell P. C. Chromosomal and molecular clues to tumor progression. Semin Oncol. 1989 Apr;16(2):116–127. [PubMed] [Google Scholar]
  15. Ornitz D. M., Hammer R. E., Messing A., Palmiter R. D., Brinster R. L. Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science. 1987 Oct 9;238(4824):188–193. doi: 10.1126/science.2821617. [DOI] [PubMed] [Google Scholar]
  16. Ornitz D. M., Palmiter R. D., Hammer R. E., Brinster R. L., Swift G. H., MacDonald R. J. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature. 1985 Feb 14;313(6003):600–602. doi: 10.1038/313600a0. [DOI] [PubMed] [Google Scholar]
  17. Parsa I., Longnecker D. S., Scarpelli D. G., Pour P., Reddy J. K., Lefkowitz M. Ductal metaplasia of human exocrine pancreas and its association with carcinoma. Cancer Res. 1985 Mar;45(3):1285–1290. [PubMed] [Google Scholar]
  18. Pour P. M. Histogenesis of exocrine pancreatic cancer in the hamster model. Environ Health Perspect. 1984 Jun;56:229–243. doi: 10.1289/ehp.8456229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quaife C. J., Pinkert C. A., Ornitz D. M., Palmiter R. D., Brinster R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell. 1987 Mar 27;48(6):1023–1034. doi: 10.1016/0092-8674(87)90710-0. [DOI] [PubMed] [Google Scholar]
  20. Sager R. Tumor suppressor genes: the puzzle and the promise. Science. 1989 Dec 15;246(4936):1406–1412. doi: 10.1126/science.2574499. [DOI] [PubMed] [Google Scholar]
  21. Scarpelli D. G., Rao M. S., Reddy J. K. Studies of pancreatic carcinogenesis in different animal models. Environ Health Perspect. 1984 Jun;56:219–227. [PMC free article] [PubMed] [Google Scholar]
  22. Seeburg P. H. The human growth hormone gene family: nucleotide sequences show recent divergence and predict a new polypeptide hormone. DNA. 1982;1(3):239–249. doi: 10.1089/dna.1.1982.1.239. [DOI] [PubMed] [Google Scholar]
  23. Straus D. S. Growth-stimulatory actions of insulin in vitro and in vivo. Endocr Rev. 1984 Spring;5(2):356–369. doi: 10.1210/edrv-5-2-356. [DOI] [PubMed] [Google Scholar]
  24. Townes T. M., Lingrel J. B., Chen H. Y., Brinster R. L., Palmiter R. D. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J. 1985 Jul;4(7):1715–1723. doi: 10.1002/j.1460-2075.1985.tb03841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weinberg R. A. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 1989 Jul 15;49(14):3713–3721. [PubMed] [Google Scholar]