Gelsolin has three actin-binding sites (original) (raw)

Abstract

Gelsolin, a Ca2+-modulated actin filament-capping and -severing protein, complexes with two actin monomers. Studies designed to localize binding sites on proteolytic fragments identify three distinct actin-binding peptides. 14NT, a 14-kD fragment that contains the NH2 terminal, will depolymerize F-actin. This peptide forms a 1:1 complex with G-actin which blocks the exchange of etheno-ATP from bound actin. The estimated association and dissociation rates for this complex are 0.3 microM-1 s-1 and 1.35 x 10(-6) s-1 which gives a maximum calculated Kd = 4.5 x 10(-12) M. 26NT, the adjacent peptide on the NH2-terminal half of gelsolin, binds to both G- and F-actin. This fragment has little or no intrinsic severing activity and will bind to F-actin to nearly stoichiometric ratios. The interactions of 14NT and 26NT with actin are largely Ca2+ independent and one of these sites, probably 14NT, is the EGTA-stable site identified in the intact protein. 41CT, the COOH-terminal half of gelsolin, forms a rapidly reversible 1:1 complex with actin, Kd = 25 nM, that slows but does not block etheno- ATP exchange. This interaction is Ca2+ dependent and is the exchangeable site in the intact protein. One of these sites is hidden in the intact protein, but cleavage into half fragments exposes all three and removes the Ca2+ dependence of severing.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan J., Coluccio L. M. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. J Cell Biol. 1985 Oct;101(4):1236–1244. doi: 10.1083/jcb.101.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan J., Hwo S. Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin. J Cell Biol. 1986 Apr;102(4):1439–1446. doi: 10.1083/jcb.102.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  4. Carlier M. F., Pantaloni D., Korn E. D. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. J Biol Chem. 1986 Aug 15;261(23):10778–10784. [PubMed] [Google Scholar]
  5. Chaponnier C., Janmey P. A., Yin H. L. The actin filament-severing domain of plasma gelsolin. J Cell Biol. 1986 Oct;103(4):1473–1481. doi: 10.1083/jcb.103.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper J. A., Bryan J., Schwab B., 3rd, Frieden C., Loftus D. J., Elson E. L. Microinjection of gelsolin into living cells. J Cell Biol. 1987 Mar;104(3):491–501. doi: 10.1083/jcb.104.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coué M., Korn E. D. ATP hydrolysis by the gelsolin-actin complex and at the pointed ends of gelsolin-capped filaments. J Biol Chem. 1986 Feb 5;261(4):1588–1593. [PubMed] [Google Scholar]
  8. Coué M., Korn E. D. Interaction of plasma gelsolin with G-actin and F-actin in the presence and absence of calcium ions. J Biol Chem. 1985 Dec 5;260(28):15033–15041. [PubMed] [Google Scholar]
  9. Estes J. E., Selden L. A., Gershman L. C. Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model. J Biol Chem. 1987 Apr 15;262(11):4952–4957. [PubMed] [Google Scholar]
  10. Harris H. E. Covalent complexes formed between plasma gelsolin and actin with a zero-length cross-linking compound. Biochemistry. 1985 Nov 5;24(23):6613–6618. doi: 10.1021/bi00344a047. [DOI] [PubMed] [Google Scholar]
  11. Harris H. E. Lack of nucleotide cleavage on the binding of G-actin-ATP to plasma gelsolin. FEBS Lett. 1985 Oct 7;190(1):81–83. doi: 10.1016/0014-5793(85)80432-4. [DOI] [PubMed] [Google Scholar]
  12. Janmey P. A., Chaponnier C., Lind S. E., Zaner K. S., Stossel T. P., Yin H. L. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry. 1985 Jul 2;24(14):3714–3723. doi: 10.1021/bi00335a046. [DOI] [PubMed] [Google Scholar]
  13. Jericević Z., Benson D. M., Bryan J., Smith L. C. Rigorous convergence algorithm for fitting a monoexponential function with a background term using the least-squares method. Anal Chem. 1987 Feb 15;59(4):658–662. doi: 10.1021/ac00131a025. [DOI] [PubMed] [Google Scholar]
  14. Kurth M. C., Wang L. L., Dingus J., Bryan J. Purification and characterization of a gelsolin-actin complex from human platelets. Evidence for Ca2+-insensitive functions. J Biol Chem. 1983 Sep 25;258(18):10895–10903. [PubMed] [Google Scholar]
  15. Kwiatkowski D. J., Janmey P. A., Mole J. E., Yin H. L. Isolation and properties of two actin-binding domains in gelsolin. J Biol Chem. 1985 Dec 5;260(28):15232–15238. [PubMed] [Google Scholar]
  16. Kwiatkowski D. J., Stossel T. P., Orkin S. H., Mole J. E., Colten H. R., Yin H. L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature. 1986 Oct 2;323(6087):455–458. doi: 10.1038/323455a0. [DOI] [PubMed] [Google Scholar]
  17. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  18. Magne A., Gerard D., Hirth L., Laustriat G. Fluorescent study of tobacco mosaic virus protein. Biochim Biophys Acta. 1977 Dec 20;495(2):189–194. doi: 10.1016/0005-2795(77)90375-0. [DOI] [PubMed] [Google Scholar]
  19. Miki M., Onuma H., Mihashi K. Interaction of actin water epsilon-ATP. FEBS Lett. 1974 Sep 15;46(1):17–19. doi: 10.1016/0014-5793(74)80324-8. [DOI] [PubMed] [Google Scholar]
  20. Mockrin S. C., Korn E. D. Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5'-triphosphate. Biochemistry. 1980 Nov 11;19(23):5359–5362. doi: 10.1021/bi00564a033. [DOI] [PubMed] [Google Scholar]
  21. Neidl C., Engel J. Exchange of ADP, ATP and 1: N6-ethenoadenosine 5'-triphosphate at G-actin. Equilibrium and kinetics. Eur J Biochem. 1979 Nov 1;101(1):163–169. doi: 10.1111/j.1432-1033.1979.tb04228.x. [DOI] [PubMed] [Google Scholar]
  22. Porte F., Harricane M. C. Interactions of plasma gelsolin with actin. Isolation and characterization of binary and ternary plasma-gelsolin-actin complexes. Eur J Biochem. 1986 Jan 2;154(1):87–93. doi: 10.1111/j.1432-1033.1986.tb09362.x. [DOI] [PubMed] [Google Scholar]
  23. Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
  24. Selve N., Wegner A. Rate constants and equilibrium constants for binding of the gelsolin-actin complex to the barbed ends of actin filaments in the presence and absence of calcium. Eur J Biochem. 1986 Oct 15;160(2):379–387. doi: 10.1111/j.1432-1033.1986.tb09982.x. [DOI] [PubMed] [Google Scholar]
  25. Tellam R. L. Gelsolin inhibits nucleotide exchange from actin. Biochemistry. 1986 Sep 23;25(19):5799–5804. doi: 10.1021/bi00367a068. [DOI] [PubMed] [Google Scholar]
  26. Thames K. E., Cheung H. C., Harvey S. C. Binding of 1,N6-ethanoadenosine triphosphate to actin. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1252–1261. doi: 10.1016/0006-291x(74)90333-7. [DOI] [PubMed] [Google Scholar]
  27. Waechter F., Engel J. Association kinetics and binding constants of nucleoside triphosphates with G-actin. Eur J Biochem. 1977 Apr 1;74(2):227–232. doi: 10.1111/j.1432-1033.1977.tb11385.x. [DOI] [PubMed] [Google Scholar]
  28. Waechter F., Engel J. The kinetics of the exchange of G-actin-bound 1: N6-ethenoadenosine 5'-triphosphate with ATP as followed by fluorescence. Eur J Biochem. 1975 Sep 15;57(2):453–459. doi: 10.1111/j.1432-1033.1975.tb02320.x. [DOI] [PubMed] [Google Scholar]
  29. Waechter F. The influence of Ca2 on the dissociation of 1,N6-ethenoadenosine 5'-triphosphate from actin. Hoppe Seylers Z Physiol Chem. 1975 Nov;356(11):1821–1822. [PubMed] [Google Scholar]
  30. Weeds A. G., Harris H., Gratzer W., Gooch J. Interactions of pig plasma gelsolin with G-actin. Eur J Biochem. 1986 Nov 17;161(1):77–84. doi: 10.1111/j.1432-1033.1986.tb10126.x. [DOI] [PubMed] [Google Scholar]
  31. Yin H. L., Iida K., Janmey P. A. Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. J Cell Biol. 1988 Mar;106(3):805–812. doi: 10.1083/jcb.106.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zimmerle C. T., Patane K., Frieden C. Divalent cation binding to the high- and low-affinity sites on G-actin. Biochemistry. 1987 Oct 6;26(20):6545–6552. doi: 10.1021/bi00394a039. [DOI] [PubMed] [Google Scholar]