Molecular Markers for the agouti Coat Color Locus of the Mouse (original) (raw)

Abstract

The agouti (a) coat color locus of the mouse acts within the microenvironment of the hair follicle to control the relative amount and distribution of yellow and black pigment in the coat hairs. Over 18 different mutations with complex dominance relationships have been described at this locus. The lethal yellow (Ay) mutation is the top dominant of this series and is uniquely associated with an endogenous provirus, Emv-15, in three highly inbred strains. However, we report here that it is unlikely that the provirus itself causes the _Ay_-associated alteration in coat color, since one strain of mice (YBR-Ay/a ) lacks the provirus but still retains a yellow coat color. Using single-copy mouse DNA sequences from the regions flanking Emv-15 we have detected three patterns of restriction fragment length polymorphisms (RFLPs) within this region that can be used as molecular markers for different agouti locus alleles: a wild-type agouti (A) pattern, a pattern which generally cosegregates with the nonagouti (a) mutation, and a pattern which is specific to Emv-15. We have used these RFLPs and a panel of 28 recombinant inbred mouse strains to determine the genetic linkage of these sequences with the agouti locus and have found complete concordance between the two (95% confidence limit of 0.00 to 3.79 centimorgans). We have also physically mapped these sequences by in situ hybridization to band H1 of chromosome 2, thus directly confirming previous assignments of the location of the agouti locus.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey D. W. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation. 1971 Mar;11(3):325–327. doi: 10.1097/00007890-197103000-00013. [DOI] [PubMed] [Google Scholar]
  2. Cattanach B. M. Chemically induced mutations in mice. Mutat Res. 1966 Aug;3(4):346–353. doi: 10.1016/0027-5107(66)90041-8. [DOI] [PubMed] [Google Scholar]
  3. Chan H. W., Bryan T., Moore J. L., Staal S. P., Rowe W. P., Martin M. A. Identification of ecotropic proviral sequences in inbred mouse strains with a cloned subgenomic DNA fragment. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5779–5783. doi: 10.1073/pnas.77.10.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng Z. Y., Lovett M., Epstein L. B., Epstein C. J. The mouse IFN-alpha (Ifa) locus: correlation of physical and linkage maps by in situ hybridization. Cytogenet Cell Genet. 1986;41(2):101–106. doi: 10.1159/000132211. [DOI] [PubMed] [Google Scholar]
  5. Copeland N. G., Hutchison K. W., Jenkins N. A. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell. 1983 Jun;33(2):379–387. doi: 10.1016/0092-8674(83)90419-1. [DOI] [PubMed] [Google Scholar]
  6. Hayward W. S., Neel B. G., Astrin S. M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature. 1981 Apr 9;290(5806):475–480. doi: 10.1038/290475a0. [DOI] [PubMed] [Google Scholar]
  7. Phillips R. J. A cis-trans position effect at the A locus of the house mouse. Genetics. 1966 Aug;54(2):485–495. doi: 10.1093/genetics/54.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  9. Varmus H. E., Quintrell N., Ortiz S. Retroviruses as mutagens: insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus. Cell. 1981 Jul;25(1):23–36. doi: 10.1016/0092-8674(81)90228-2. [DOI] [PubMed] [Google Scholar]
  10. Wolff G. L., Pitot H. C. Influence of background genome on enzymatic characteristics of yellow (A v -, A vy -) mice. Genetics. 1973 Jan;73(1):109–123. doi: 10.1093/genetics/73.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wolff G. L., Roberts D. W., Galbraith D. B. Prenatal determination of obesity, tumor susceptibility, and coat color pattern in viable yellow (Avy/a) mice. The yellow mouse syndrome. J Hered. 1986 May-Jun;77(3):151–158. doi: 10.1093/oxfordjournals.jhered.a110206. [DOI] [PubMed] [Google Scholar]