Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli (original) (raw)
Abstract
Human beta-globin was synthesized in Escherichia coli as a cleavable fusion protein, using the expression vector pLcIIFX beta-globin [Nagai, K. & Thøgersen, H. C. (1984) Nature (London) 309, 810-812]. The fusion protein cIIFX beta-globin was purified to homogeneity and cleaved at the junction by blood coagulation factor Xa; the authentic beta-globin was liberated. Beta-globin was folded in vitro and reconstituted with heme and alpha subunits to form alpha 2 beta 2 tetramers. The oxygen binding properties of reconstituted Hb are essentially the same as those of human native Hb. Two mutant Hbs (Hb Nymphéas [Cys-93 beta----Ser] and Hb Daphne [Cys-93 beta----Ser, His-143 beta----Arg]) were constructed by site-directed mutagenesis using synthetic oligonucleotides. Hb Nymphéas showed a slightly increased oxygen affinity and diminished cooperativity with normal 2,3-diphosphoglyceric acid and slightly reduced alkaline Bohr effects. Hb Daphne showed low cooperativity with high oxygen affinity. The alkaline Bohr effect was slightly reduced but the diphosphoglycerate effect was enhanced by 50% by the His-143 beta----Arg mutation. As arginine is fully charged at physiological pH and has a long flexible side chain, diphosphoglycerate binds more strongly to Hb Daphne.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnone A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature. 1972 May 19;237(5351):146–149. doi: 10.1038/237146a0. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M. Structure and function of haemoglobin. Prog Biophys Mol Biol. 1975;29(3):225–320. doi: 10.1016/0079-6107(76)90024-9. [DOI] [PubMed] [Google Scholar]
- Bonaventura C., Bonaventura J., Amiconi G., Tentori L., Brunori M., Antonini E. Hemoglobin Abruzzo (beta143 (H21) His replaced by Arg). Consequences of altering the 2,3-diphosphoglycerate binding site. J Biol Chem. 1975 Aug 25;250(16):6273–6277. [PubMed] [Google Scholar]
- Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
- Courtney M., Jallat S., Tessier L. H., Benavente A., Crystal R. G., Lecocq J. P. Synthesis in E. coli of alpha 1-antitrypsin variants of therapeutic potential for emphysema and thrombosis. Nature. 1985 Jan 10;313(5998):149–151. doi: 10.1038/313149a0. [DOI] [PubMed] [Google Scholar]
- Craik C. S., Largman C., Fletcher T., Roczniak S., Barr P. J., Fletterick R., Rutter W. J. Redesigning trypsin: alteration of substrate specificity. Science. 1985 Apr 19;228(4697):291–297. doi: 10.1126/science.3838593. [DOI] [PubMed] [Google Scholar]
- Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Fogg J., Luzzana M., Rossi-Bernardi L. Role of the alpha-amino groups of the alpha and beta chains of human hemoglobin in oxygen-linked binding of carbon dioxide. J Biol Chem. 1973 Oct 25;248(20):7039–7043. [PubMed] [Google Scholar]
- Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
- Nagai K., Welborn C., Dolphin D., Kitagawa T. Resonance Raman evidence for cleavage of the Fe-N epsilon(His-F8) bond in the alpha subunit of the T-structure nitrosylhemoglobin. Biochemistry. 1980 Oct 14;19(21):4755–4761. doi: 10.1021/bi00562a006. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Brunori M. Stereochemistry of cooperative effects in fish an amphibian haemoglobins. Nature. 1982 Sep 30;299(5882):421–426. doi: 10.1038/299421a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
- Pielak G. J., Mauk A. G., Smith M. Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function. Nature. 1985 Jan 10;313(5998):152–154. doi: 10.1038/313152a0. [DOI] [PubMed] [Google Scholar]
- Rochette J., Poyart C., Varet B., Wajcman H. A new hemoglobin variant altering the alpha 1 beta 2 contact: Hb Chemilly alpha 2 beta 2 99(G1)Asp leads to Val. FEBS Lett. 1984 Jan 23;166(1):8–12. doi: 10.1016/0014-5793(84)80034-4. [DOI] [PubMed] [Google Scholar]
- Rosenberg S., Barr P. J., Najarian R. C., Hallewell R. A. Synthesis in yeast of a functional oxidation-resistant mutant of human alpha-antitrypsin. Nature. 1984 Nov 1;312(5989):77–80. doi: 10.1038/312077a0. [DOI] [PubMed] [Google Scholar]
- Varadarajan R., Szabo A., Boxer S. G. Cloning, expression in Escherichia coli, and reconstitution of human myoglobin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5681–5684. doi: 10.1073/pnas.82.17.5681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
- Winter G., Fersht A. R., Wilkinson A. J., Zoller M., Smith M. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature. 1982 Oct 21;299(5885):756–758. doi: 10.1038/299756a0. [DOI] [PubMed] [Google Scholar]