Mechanisms for Development of Diabetic Hypertriglyceridemia in Streptozotocin-Treated Rats EFFECT OF DIET AND DURATION OF INSULIN DEFICIENCY (original) (raw)

Abstract

A combined ultrastructural and functional approach was employed to define the effects of duration of diabetes and of diet on various aspects of lipid metabolism in rats with severe streptozotocin (SZ)-induced insulin deficiency. Plasma triglyceride (TG) levels rose to a mean of 479 mg/100 ml 24 h after SZ administration in rats eating a fat-free, high carbohydrate diet as compared to a mean of 324 mg/100 ml in rats eating a high fat diet. These changes were associated with a commensurate increase in hepatocyte Golgi very low density lipoprotein (VLDL) content, but only a small increase in estimates of VLDL-TG secretion rate (post-Triton WR 1339 increment in plasma TG level). Although these findings are consistent with the thesis that VLDL-TG synthesis and secretion are increased 24 h after administration of SZ, it seemed unlikely that the observed increase in VLDL-TG secretion could entirely account for the severity of the hypertriglyceridemia. Thus, although lipoprotein removal rate was not measured directly, it was necessary to postulate that a defect in VLDL-TG removal was also present at this stage.

Hypertriglyceridemia was still present 7 days later, only in this instance plasma TG levels were higher in rats eating the high fat diet (a mean of 589 mg/100 ml, as compared to 263 mg/100 ml). Rats with diabetes of 7-day duration had a 50% decrease in both TG entry rate and hepatocyte Golgi complex VLDL content, irrespective of diet. Thus, there was no evidence of increased VLDL-TG secretion in chronic insulin deficiency. In this instance, although not assessed directly, it was necessary to postulate that the hypertriglyceridemia in chronically insulin-deficient rats is due entirely to a defect in lipoprotein removal, involving both dietary and endogenous fat.

1167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AHRENS E. H., Jr, HIRSCH J., OETTE K., FARQUHAR J. W., STEIN Y. Carbohydrate-induced and fat-induced lipemia. Trans Assoc Am Physicians. 1961;74:134–146. [PubMed] [Google Scholar]
  2. ALBRINK M. J., LAVIETES P. H., MAN E. B. Vascular disease and serum lipids in diabetes mellitus. Observations over thirty years (1931-1961). Ann Intern Med. 1963 Feb;58:305–323. doi: 10.7326/0003-4819-58-2-305. [DOI] [PubMed] [Google Scholar]
  3. Bagdade J. D., Porte D., Jr, Bierman E. L. Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects. Diabetes. 1968 Mar;17(3):127–132. doi: 10.2337/diab.17.3.127. [DOI] [PubMed] [Google Scholar]
  4. Balasse E. O., Bier D. M., Havel R. J. Early effects of anti-insulin serum on hepatic metabolism of plasma free fatty acids in dogs. Diabetes. 1972 May;21(5):280–288. doi: 10.2337/diab.21.5.280. [DOI] [PubMed] [Google Scholar]
  5. Basso L. V., Havel R. J. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J Clin Invest. 1970 Mar;49(3):537–547. doi: 10.1172/JCI106264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bierman E. L., Amaral J. A., Belknap B. H. Hyperlipemia and diabetes mellitus. Diabetes. 1966 Sep;15(9):675–679. doi: 10.2337/diab.15.9.675. [DOI] [PubMed] [Google Scholar]
  7. Bierman E. L., Bagdade J. D., Porte D., Jr A concept of the pathogenesis of diabetic lipemia. Trans Assoc Am Physicians. 1966;79:348–360. [PubMed] [Google Scholar]
  8. Bohmer T., Havel R. J., Long J. A. Physiological fatty liver and hyperlipemia in the fetal guinea pig: chemical and ultrastructural characterization. J Lipid Res. 1972 May;13(3):371–382. [PubMed] [Google Scholar]
  9. Braunsteiner H., Sailer S., Sandhofer F. Plasmalipide bei Patienten mit Diabetes mellitus. Klin Wochenschr. 1966 Feb 1;44(3):116–119. doi: 10.1007/BF01746560. [DOI] [PubMed] [Google Scholar]
  10. Brown D. F. Triglyceride metabolism in the alloxan-diabetic rat. Diabetes. 1967 Feb;16(2):90–95. doi: 10.2337/diab.16.2.90. [DOI] [PubMed] [Google Scholar]
  11. CHERNICK S. S., SCOW R. O. Early effects of total pancreatectomy on fat metabolism in the rat. Am J Physiol. 1959 Jan;196(1):125–131. doi: 10.1152/ajplegacy.1958.196.1.125. [DOI] [PubMed] [Google Scholar]
  12. Corder C. N., Kalkhoff R. K. Hepatic lipid metabolism in aloxan diabetic rats. J Lab Clin Med. 1969 Apr;73(4):551–563. [PubMed] [Google Scholar]
  13. Dalton C., Kowalski C. Automated colorimetric determination of free fatty acids in biologic fluids. Clin Chem. 1967 Sep;13(9):744–751. [PubMed] [Google Scholar]
  14. Desbuquois B., Aurbach G. D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab. 1971 Nov;33(5):732–738. doi: 10.1210/jcem-33-5-732. [DOI] [PubMed] [Google Scholar]
  15. Gross R. C., Carlson L. A. Metabolic effects of nicotinic acid in acute insulin deficiency in the rat. Diabetes. 1968 Jun;17(6):353–361. doi: 10.2337/diab.17.6.353. [DOI] [PubMed] [Google Scholar]
  16. HAMWI G. J., GARCIA O., KRUGER F. A., GWINUP G., CORNWELL D. G. Hyperlipidemia in uncontrolled diabetes. Metabolism. 1962 Aug;11:850–862. [PubMed] [Google Scholar]
  17. Hamilton R. L., Regen D. M., Gray M. E., LeQuire V. S. Lipid transport in liver. I. Electron microscopic identification of very low density lipoproteins in perfused rat liver. Lab Invest. 1967 Feb;16(2):305–319. [PubMed] [Google Scholar]
  18. Heimberg M., Van Harken D. R., Brown T. O. Hepatic lipid metabolism in experimental diabetes. II. Incorporation of [I-14C]palmitate into lipids of the liver and of the d less than 1.020 perfusate lipoproteins. Biochim Biophys Acta. 1967 Jun 6;137(3):435–445. [PubMed] [Google Scholar]
  19. Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
  20. Junod A., Lambert A. E., Stauffacher W., Renold A. E. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov;48(11):2129–2139. doi: 10.1172/JCI106180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lombardi B. Considerations on the pathogenesis of fatty liver. Lab Invest. 1966 Jan;15(1 Pt 1):1–20. [PubMed] [Google Scholar]
  22. Mahley R. W., Hamilton R. L., Lequire V. S. Characterization of lipoprotein particles isolated from the Golgi apparatus of rat liver. J Lipid Res. 1969 Jul;10(4):433–439. [PubMed] [Google Scholar]
  23. Nikkilä E. A. Control of plasma and liver triglyceride kinetics by carbohydrate metabolism and insulin. Adv Lipid Res. 1969;7:63–134. doi: 10.1016/b978-0-12-024907-7.50009-9. [DOI] [PubMed] [Google Scholar]
  24. Nikkilä E. A., Kekki M. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism. 1973 Jan;22(1):1–22. doi: 10.1016/0026-0495(73)90024-3. [DOI] [PubMed] [Google Scholar]
  25. Otway S., Robinson D. S. The effect of a non-ionic detergent (Triton WR 1339) on the removal of triglyceride fatty acids from the blood of the rat. J Physiol. 1967 May;190(2):309–319. doi: 10.1113/jphysiol.1967.sp008210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reaven E. P., Kolterman O. G., Reaven G. M. Ultrastructural and physiological evidence for corticosteroid-induced alterations in hepatic production of very low density lipoprotein particles. J Lipid Res. 1974 Jan;15(1):74–83. [PubMed] [Google Scholar]
  27. Recknagel R. O. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967 Jun;19(2):145–208. [PubMed] [Google Scholar]
  28. SCHNATZ J. D., WILLIAMS R. H. The effect of acute insulin deficiency in the rat on adipose tissue lipolytic activity and plasma lipids. Diabetes. 1963 Mar-Apr;12:174–178. doi: 10.2337/diab.12.2.174. [DOI] [PubMed] [Google Scholar]
  29. Schnatz J. D., Formaniak J. M., Chlouverakis C. The origin of hypertriglyceridemia in streptozotocin diabetic rats. Diabetologia. 1972 Apr;8(2):125–130. doi: 10.1007/BF01235637. [DOI] [PubMed] [Google Scholar]
  30. Stein O., Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol. 1967 May;33(2):319–339. doi: 10.1083/jcb.33.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Harken D. R., Brown T. O., Heimberg M. Hepatic lipid metabolism in experimental diabetes: III. Synthesis and utilization of triglycerides. Lipids. 1967 May;2(3):231–238. doi: 10.1007/BF02532561. [DOI] [PubMed] [Google Scholar]
  32. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  33. Woodside W. F., Heimberg M. Hepatic metabolism of free fatty acids in experimental diabetes. Isr J Med Sci. 1972 Mar;8(3):309–316. [PubMed] [Google Scholar]