Hematopoietic thymocyte precursors. I. Assay and kinetics of the appearance of progeny (original) (raw)

Abstract

A quantitative assay for the hematopoietic precursor of thymocytes has been developed. Using this assay the kinetics of appearance of the progeny of transfused bone marrow and spleen cells in the thymus of irradiated (760 R) mice has been studied. Precursor cells are seven to eightfold more common in bone marrow than in spleen and are absent from peripheral lymph nodes. They decline in number as the animals age. When hematopoietic cells are injected immediately after lethal irradiation only a small number of cells actually enter the gland. Their progeny are not detectable in the thymus for 8-12 days. The time of their detection depends both upon the size of the residual endogenous thymocyte population and the number of progenitor cells injected. Evidence has been presented that excludes thymic injury as the basis for the delay in the appearance of donor type cells and indicates that neither the production of a "homing" signal in the irradiated animal nor the development of precursor cells are limiting factors in the rate of thymic repopulation. These studies indicate that only an exceedingly small number (less than 100) of prothymocytes are required to repopulate the thymus of an irradiated mouse. This restricted number of progenitors must produce the entire repertory of T-cell immunologic responsiveness seen in the first weeks after repopulation.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALNER H., DERSJANT H. EARLY LYMPHATIC REGENERATION IN THYMECTOMIZED RADIATION CHIMERAS. Nature. 1964 Dec 5;204:941–942. doi: 10.1038/204941a0. [DOI] [PubMed] [Google Scholar]
  2. Basch R. S., Goldstein G. Induction of T-cell differentiation in vitro by thymin, a purified polypeptide hormone of the thymus. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1474–1478. doi: 10.1073/pnas.71.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blomgren H., Andersson B. Reappearance and relative importance of immunocompetent cells in the thymus, spleen and lymph nodes following lethal x-irradiation and bone marrow reconstitution in mice. J Immunol. 1971 Mar;106(3):831–834. [PubMed] [Google Scholar]
  4. Boyle W. An extension of the 51Cr-release assay for the estimation of mouse cytotoxins. Transplantation. 1968 Sep;6(6):761–764. doi: 10.1097/00007890-196809000-00002. [DOI] [PubMed] [Google Scholar]
  5. Bryant B. J. Renewal and fate in the mammalian thymus: mechanisms and inferences of thymocytokinetics. Eur J Immunol. 1972 Feb;2(1):38–45. doi: 10.1002/eji.1830020109. [DOI] [PubMed] [Google Scholar]
  6. Chiscon M. Q., Golub E. S. Functional development of the interacting cells in the immune response. I. Development of T cell and B cell function. J Immunol. 1972 May;108(5):1379–1386. [PubMed] [Google Scholar]
  7. Decleve A., Gerber G. B., Leonard A., Lambiet-Collier M., Sassen A., Maisin J. R. Regneration of thymus, spleen and bone marrow in x-irradiated AKR mice. Radiat Res. 1972 Aug;51(2):318–332. [PubMed] [Google Scholar]
  8. Dukor P., Miller J. F., House W., Allman V. Regeneration of thymus grafts. I. Histological and cytological aspects. Transplantation. 1965 Sep;3(5):639–668. doi: 10.1097/00007890-196509000-00006. [DOI] [PubMed] [Google Scholar]
  9. Fabrikant J. I., Foster B. R. Cell population kinetics in lymphocytes in mouse and rat thymus. Johns Hopkins Med J. 1972 Apr;130(4):208–215. [PubMed] [Google Scholar]
  10. GENGOZIAN N., URSO I. S., CONGDON C. C., CONGER A. D., MAKINODAN T. Thymus specificity in lethally irradiated mice treated with rat bone marrow. Proc Soc Exp Biol Med. 1957 Dec;96(3):714–720. doi: 10.3181/00379727-96-23586. [DOI] [PubMed] [Google Scholar]
  11. Gad P., Clark S. L., Jr Involution and regeneration of the thymus in mice, induced by bacterial endotoxin and studied by quantitative histology and electron microscopy. Am J Anat. 1968 May;122(3):573–605. doi: 10.1002/aja.1001220310. [DOI] [PubMed] [Google Scholar]
  12. HARRIS J. E., FORD C. E., BARNES D. W., EVANS E. P. EVIDENCE FROM PARABIOSIS FOR AN AFFERENT STREAM OF CELLS. Nature. 1964 Feb 29;201:886–887. doi: 10.1038/201886a0. [DOI] [PubMed] [Google Scholar]
  13. Harrison D. E., Doubleday J. W. Normal function of immunologic stem cells from aged mice. J Immunol. 1975 Apr;114(4):1314–1317. [PubMed] [Google Scholar]
  14. Hiesche K. D., Révész L. Cellular repopulation in irradiated mouse thymus and bone marrow. Beitr Pathol. 1974 Mar;151(3):304–316. doi: 10.1016/s0005-8165(74)80007-7. [DOI] [PubMed] [Google Scholar]
  15. Kadish J. L., Basch R. S. Thymic regeneration after lethal irradiation evidence for an intra-thymic radioresistant T cell precursor. J Immunol. 1975 Jan;114(1 Pt 2):452–458. [PubMed] [Google Scholar]
  16. Komure K., Goldstein G., Boyse E. A. Thymus-repopulating capacity of cells that can be induced to differentiate to T cells in vitro. J Immunol. 1975 Jul;115(1):195–198. [PubMed] [Google Scholar]
  17. Komuro K., Boyse E. A. In-vitro demonstration of thymic hormone in the mouse by conversion of precursor cells into lymphocytes. Lancet. 1973 Apr 7;1(7806):740–743. doi: 10.1016/s0140-6736(73)92127-2. [DOI] [PubMed] [Google Scholar]
  18. Lafleur L., Miller R. G., Phillips R. A. Restriction of specificity in the precursors of bone marrow-associated lymphocytes. J Exp Med. 1973 Apr 1;137(4):954–966. doi: 10.1084/jem.137.4.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Le Douarin N. M., Jotereau F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med. 1975 Jul 1;142(1):17–40. doi: 10.1084/jem.142.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore M. A., Owen J. J. Experimental studies on the development of the thymus. J Exp Med. 1967 Oct 1;126(4):715–726. doi: 10.1084/jem.126.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owen J. J., Raff M. C. Studies on the differentiation of thymus-derived lymphocytes. J Exp Med. 1970 Dec 1;132(6):1216–1232. doi: 10.1084/jem.132.6.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rubin B., Trier L., Hertel-Wulff B., Rumler B. Selective retention of T cell precursors in bone marrow. Cell populations after filtration through anti-immunoglobulin columns. Cell Immunol. 1975 Apr;16(2):315–329. doi: 10.1016/0008-8749(75)90121-5. [DOI] [PubMed] [Google Scholar]
  23. Takada A., Takada Y. Proliferation of donor marrow and thymus cells in the myeloid and lymphoid organs of irradiated syngeneic host mice. J Exp Med. 1973 Feb 1;137(2):543–546. doi: 10.1084/jem.137.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WIGZELL H. QUANTITATIVE TITRATIONS OF MOUSE H-2 ANTIBODIES USING CR-51-LABELLED TARGET CELLS. Transplantation. 1965 May;3:423–431. doi: 10.1097/00007890-196505000-00011. [DOI] [PubMed] [Google Scholar]