The hydrolysis of phosphatidylinositol monolayers at an air/water interface by the calcium-ion-dependent phosphatidylinositol phosphodiesterase of pig brain (original) (raw)

Abstract

1. The activity of Ca2+-dependent phosphatidylinositol phosphodiesterase (EC 3.1.4.10) of pig brain against [32P]phosphatidylinositol monolayers at an air/water interface has been measured. As the monolayer pressure was increased a sharp cut-off of enzymic hydrolysis occurred at 33 X 10(-3) N/m. 2. The addition of either phosphatidic acid, phosphatidylglycerol or oleyl alcohol increased the film pressure at which cut off occurred, as well as increasing the rate of hydrolysis at lower pressures. 3. The rate of hydrolysis, but not the cut-off pressure, was markedly increased by oleic acid and slightly increased by phosphatidylethanolamine. 4. Phosphatidylcholine, palmitoylcholine and octadecylamine decreased the cut-off pressure, as well as the enzymic activity below this pressure. 5. Stearic acid and stearyl alcohol had no effect on either the cut-off pressure or the activity. 6. All activators decreased the length of the lag phase before enzyme activity began, and phosphatidylcholine increased it. 7. These results are compared with the stimulatory and inhibitory effects of various amphiphiles observed previously with phosphatidylinositol dispersions [Irvine, Hemington & Dawson (1979) Eur. J. Biochem. 99, 525-530], and their possible relevance to the control of the phosphatidylinositol phosphodiesterase in vivo are discussed.

607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANGHAM A. D., DAWSON R. M. Electrokinetic requirements for the reaction between Cl. perfringens alpha-toxin (phospholipase C) and phospholipid substrates. Biochim Biophys Acta. 1962 May 7;59:103–115. doi: 10.1016/0006-3002(62)90701-1. [DOI] [PubMed] [Google Scholar]
  2. BANGHAM A. D., DAWSON R. M. The physicochemical requirements for the action of Penicillium notatum phospholipase B on unimolecular films of lecithin. Biochem J. 1960 Apr;75:133–138. doi: 10.1042/bj0750133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  4. DAWSON R. M. ON THE MECHANISM OF ACTION OF PHOSPHOLIPASE A. Biochem J. 1963 Sep;88:414–423. doi: 10.1042/bj0880414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson R. M., Hemington N. Some properties of purified phospholipase D and especially the effect of amphipathic substances. Biochem J. 1967 Jan;102(1):76–86. doi: 10.1042/bj1020076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  7. Gould R. M., Dawson R. M. The trypsin-catalyzed hydrolysis of monomolecular films of lysylphosphatidylglycerol. Biochim Biophys Acta. 1972 Oct 23;288(1):1–11. doi: 10.1016/0005-2736(72)90217-9. [DOI] [PubMed] [Google Scholar]
  8. Hauser H., Dawson R. M. The binding of calcium at lipid-water interfaces. Eur J Biochem. 1967 Mar;1(1):61–69. doi: 10.1007/978-3-662-25813-2_11. [DOI] [PubMed] [Google Scholar]
  9. Hokin L. E. Dynamic aspects of phospholipids during protein secretion. Int Rev Cytol. 1968;23:187–208. doi: 10.1016/s0074-7696(08)60272-7. [DOI] [PubMed] [Google Scholar]
  10. Irvine R. F., Dawson R. M. The control of phosphatidylinositol turnover in cell membranes. Biochem Soc Trans. 1980 Feb;8(1):27–30. doi: 10.1042/bst0080027. [DOI] [PubMed] [Google Scholar]
  11. Irvine R. F., Dawson R. M. The mechanism and function of phosphatidylinositol turnover [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):376–377. doi: 10.1042/bst0080376. [DOI] [PubMed] [Google Scholar]
  12. Irvine R. F., Hemington N., Dawson R. M. The calcium-dependent phosphatidylinositol-phosphodiesterase of rat brain. Mechanisms of suppression and stimulation. Eur J Biochem. 1979 Sep;99(3):525–530. doi: 10.1111/j.1432-1033.1979.tb13284.x. [DOI] [PubMed] [Google Scholar]
  13. Irvine R. F., Hemington N., Dawson R. M. The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain. Biochem J. 1978 Nov 15;176(2):475–484. doi: 10.1042/bj1760475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips M. C., Finer E. G., Hauser H. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes. Biochim Biophys Acta. 1972 Dec 1;290(1):397–402. doi: 10.1016/0005-2736(72)90084-3. [DOI] [PubMed] [Google Scholar]
  15. Quarles R. H., Dawson R. M. The hydrolysis of monolayers of phosphatidyl(Me-14C)choline by phospholipase D. Biochem J. 1969 Jul;113(4):697–705. doi: 10.1042/bj1130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quinn P. J., Barenholz Y. A comparison of the activity of phosphatidylinositol phosphodiesterase against substrate in dispersions and as monolayers at the air-water interface. Biochem J. 1975 Jul;149(1):199–208. doi: 10.1042/bj1490199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quinn P. J., Dawson R. M. An analysis of the interaction of protein with lipid monolayers at the air-water interface. Biochem J. 1970 Feb;116(4):671–680. doi: 10.1042/bj1160671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zografi G., Verger R., de Haas G. H. Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A. Chem Phys Lipids. 1971 Dec;7(4):185–206. doi: 10.1016/0009-3084(71)90001-6. [DOI] [PubMed] [Google Scholar]