Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties (original) (raw)

Abstract

Biphasic, chimeric plasmids for the transformation of Agmenellum quadruplicatum PR-6 (Synechococcus sp. strain 7002) were constructed by splicing the 3.0-megadalton cryptic plasmid from strain PR-6 into plasmids pBR322 and pBR325 from Escherichia coli. Transformants of either E. coli or strain PR-6 by these plasmids could be detected on the basis of the drug resistance marker(s) carried by the chimeric plasmids. Plasmid DNA isolated from a PR-6 transformant transformed PR-6 much more efficiently than plasmid DNA prepared from E. coli. Plasmids from which the AvaI recognition site was deleted (AvaI is an isoschizomer of the AquI restriction endonuclease of strain PR-6) also transformed strain PR-6 much more efficiently than did plasmids containing the AvaI recognition site. These and other results suggest that AquI strongly effects plasmid transformation when the donor plasmid contains an unmodified AquI recognition site. Multimeric forms of the chimeric plasmids are also much more efficient at transforming strain PR-6 than are the analogous monomeric forms.

1446

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Canosi U., Morelli G., Trautner T. A. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol Gen Genet. 1978 Nov 9;166(3):259–267. doi: 10.1007/BF00267617. [DOI] [PubMed] [Google Scholar]
  2. Devilly C. I., Houghton J. A. A study of genetic transformation in Gloeocapsa alpicola. J Gen Microbiol. 1977 Jan;98(1):277–280. doi: 10.1099/00221287-98-1-277. [DOI] [PubMed] [Google Scholar]
  3. Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
  4. Guerry P., LeBlanc D. J., Falkow S. General method for the isolation of plasmid deoxyribonucleic acid. J Bacteriol. 1973 Nov;116(2):1064–1066. doi: 10.1128/jb.116.2.1064-1066.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Humphreys G. O., Willshaw G. A., Anderson E. S. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta. 1975 Apr 2;383(4):457–463. doi: 10.1016/0005-2787(75)90318-4. [DOI] [PubMed] [Google Scholar]
  6. Kuhlemeier C. J., Borrias W. E., van den Hondel C. A., van Arkel G. A. Vectors for cloning in cyanobacteria: construction and characterization of two recombinant plasmids capable of transformation of Escherichia coli K12 and Anacystis nidulans R2. Mol Gen Genet. 1981;184(2):249–254. doi: 10.1007/BF00272912. [DOI] [PubMed] [Google Scholar]
  7. Lau R. H., Doolittle W. F. AQUI: a more easily purified isoschizomer of AVAI. FEBS Lett. 1980 Dec 1;121(2):200–202. doi: 10.1016/0014-5793(80)80341-3. [DOI] [PubMed] [Google Scholar]
  8. Lau R. H., Sapienza C., Doolittle W. F. Cyanobacterial plasmids: their widespread occurrence, and the existence of regions of homology between plasmids in the same and different species. Mol Gen Genet. 1980 Apr;178(1):203–211. doi: 10.1007/BF00267230. [DOI] [PubMed] [Google Scholar]
  9. Manis J. J., Kline B. C. Restriction endonuclease mapping and mutagenesis of the F sex factor replication region. Mol Gen Genet. 1977 Apr 29;152(3):175–182. doi: 10.1007/BF00268815. [DOI] [PubMed] [Google Scholar]
  10. Mottes M., Grandi G., Sgaramella V., Canosi U., Morelli G., Trautner T. A. Different specific activities of the monomeric and oligomeric forms of plasmid DNA in transformation of B. subtilis and E. coli. Mol Gen Genet. 1979 Jul 24;174(3):281–286. doi: 10.1007/BF00267800. [DOI] [PubMed] [Google Scholar]
  11. Roberts T. M., Koths K. E. The blue-green alga agmenellum quadruplicatum contains covalently closed DNA circles. Cell. 1976 Dec;9(4 Pt 1):551–557. doi: 10.1016/0092-8674(76)90037-4. [DOI] [PubMed] [Google Scholar]
  12. Saunders C. W., Guild W. R. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol Gen Genet. 1981;181(1):57–62. doi: 10.1007/BF00339005. [DOI] [PubMed] [Google Scholar]
  13. Saunders C. W., Guild W. R. Pathway of plasmid transformation in Pneumococcus: open circular and linear molecules are active. J Bacteriol. 1981 May;146(2):517–526. doi: 10.1128/jb.146.2.517-526.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sherman L. A., van de Putte P. Construction of a hybrid plasmid capable of replication in the bacterium Escherichia coli and the cyanobacterium Anacystis nidulans. J Bacteriol. 1982 Apr;150(1):410–413. doi: 10.1128/jb.150.1.410-413.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shestakov S. V., Khyen N. T. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet. 1970;107(4):372–375. doi: 10.1007/BF00441199. [DOI] [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  17. Stevens S. E., Porter R. D. Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6052–6056. doi: 10.1073/pnas.77.10.6052. [DOI] [PMC free article] [PubMed] [Google Scholar]