Pharmacological inhibition of the M-current (original) (raw)
Abstract
1. The effects of muscarinic agonists, luteinizing hormone-releasing hormone (LHRH) analogues, uridine triphosphate (UTP) and divalent cations on K+-currents in voltage-clamped bullfrog sympathetic neurones have been studied.
2. Muscarine (1-10 μM), D-ala6 LHRH (1-5 μM), UTP (50-100 μM) and Ba2+ (1-4 mM) selectively depressed the M-current (_I_M), without appreciable effect on the delayed rectifier, Ca2+-activated or transient outward currents (_I_K, _I_C or _I_A).
3. _I_M-inhibition was characterized by: (a) elimination of slow current relaxations accompanying voltage jumps in the membrane potential range -30 to -60 mV; (b) reduced voltage-dependent chord conductance over this range with no change in the voltage-independent chord conductance at more negative membrane potentials; (c) suppression of outward rectification in the steady-state current—voltage curve between -70 and -25 mV; and (d) development of an inward current which increased in amplitude between -70 and -20 mV in proportion to the decrease in steady-state _I_M. The kinetics and voltage sensitivity of residual _I_M were unchanged.
4. The magnitude of the inward current produced by muscarine or LHRH could be accounted for quantitatively by the reduction in steady-state _I_M. No increase in leak current could be detected in the range -60 to -30 mV. In two cells muscarine (10 μM) increased the leak current and conductance at -70 to -100 mV, but not at more depolarized levels.
5. _I_M was not modified by removing extracellular Ca2+, adding a selective Ca2+-channel blocker (Cd2+), adding 1 mM-dibutyryl cyclic AMP or 8′Br cyclic GMP, or by intracellular ionophoresis of Ca2+, 8′Br cyclic GMP, dibutyryl cyclic AMP, GTP-γ-S or S-adenosylmethionine.
6. It is concluded that the principal effects of these agents in unclamped neurones — depolarization, increased input resistance, reduced outward rectification and increased excitability — are due entirely to a selective inhibition of _I_M. The intracellular transduction mechanism for _I_M inhibition is unknown.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMBACHE N., PERRY W. L., ROBERTSON P. A. The effect of muscarine on perfused superior cervical ganglia of cats. Br J Pharmacol Chemother. 1956 Dec;11(4):442–448. doi: 10.1111/j.1476-5381.1956.tb00014.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AMBACHE N. The nicotinic action of substances supposed to be purely smooth-muscle stimulating; effect of BaCl2 and pilocarpine on the superior cervical ganglion. J Physiol. 1949 Dec 15;110(1-2):164–172. doi: 10.1113/jphysiol.1949.sp004429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Brown D. A. Luteinizing hormone-releasing factor and muscarinic agonists act on the same voltage-sensitive K+-current in bullfrog sympathetic neurones. Br J Pharmacol. 1980 Mar;68(3):353–355. doi: 10.1111/j.1476-5381.1980.tb14547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Constanti A., Brown D. A., Clark R. B. Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature. 1982 Apr 22;296(5859):746–749. doi: 10.1038/296746a0. [DOI] [PubMed] [Google Scholar]
- Akasu T., Koketsu K. Desensitization of the muscarinic receptor controlling action potentials of sympathetic ganglion cells in bullfrogs. Life Sci. 1980 Dec 8;27(23):2261–2267. doi: 10.1016/0024-3205(80)90393-8. [DOI] [PubMed] [Google Scholar]
- Bolton T. B. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1972 Feb;220(3):647–671. doi: 10.1113/jphysiol.1972.sp009728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Adams P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980 Feb 14;283(5748):673–676. doi: 10.1038/283673a0. [DOI] [PubMed] [Google Scholar]
- Brown D. A., Constanti A. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones. Br J Pharmacol. 1980 Dec;70(4):593–608. doi: 10.1111/j.1476-5381.1980.tb09778.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Fatherazi S., Garthwaite J., White R. D. Muscarinic receptors in rat sympathetic ganglia. Br J Pharmacol. 1980 Dec;70(4):577–592. doi: 10.1111/j.1476-5381.1980.tb09777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971 Feb;213(1):21–30. doi: 10.1113/jphysiol.1971.sp009365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Constanti A., Adams P. R., Brown D. A. Who do barium ions imitate acetylcholine? Brain Res. 1981 Feb 9;206(1):244–250. doi: 10.1016/0006-8993(81)90125-6. [DOI] [PubMed] [Google Scholar]
- Constanti A., Brown D. A. M-Currents in voltage-clamped mammalian sympathetic neurones. Neurosci Lett. 1981 Jul 17;24(3):289–294. doi: 10.1016/0304-3940(81)90173-7. [DOI] [PubMed] [Google Scholar]
- Freschi J. E., Shain W. G. Slow muscarinic depolarization in neurons of dissociated rat superior cervical ganglia can be evoked by iontophoresis of acetylcholine. Brain Res. 1980 Mar 10;185(2):429–434. doi: 10.1016/0006-8993(80)91081-1. [DOI] [PubMed] [Google Scholar]
- Ginsborg B. L. The actions of McN-A-343, pilocarpine and acetyl-beta-methylcholine on sympathetic ganglion cells of the frog. J Pharmacol Exp Ther. 1965 Nov;150(2):216–219. [PubMed] [Google Scholar]
- Gruol D. L., Siggins G. R., Padjen A. L., Forman D. S. Explant cultures of adult amphibian sympathetic ganglia: electrophysiological and pharmacological investigation of neurotransmitter and nucleotide action. Brain Res. 1981 Oct 26;223(1):81–106. doi: 10.1016/0006-8993(81)90808-8. [DOI] [PubMed] [Google Scholar]
- Hauswirth O., Noble D., Tsien R. W. Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science. 1968 Nov 22;162(3856):916–917. doi: 10.1126/science.162.3856.916. [DOI] [PubMed] [Google Scholar]
- Hermann A., Gorman A. L. Blockade of voltage-dependent and Ca2+-dependent K+ current components by internal Ba2+ in molluscan pacemaker neurons. Experientia. 1979 Feb 15;35(2):229–231. doi: 10.1007/BF01920633. [DOI] [PubMed] [Google Scholar]
- Horn R., Brodwick M. S. Acetylcholine-induced current in perfused rat myoballs. J Gen Physiol. 1980 Mar;75(3):297–321. doi: 10.1085/jgp.75.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan Y. N., Jan L. Y., Kuffler S. W. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1501–1505. doi: 10.1073/pnas.76.3.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan Y. N., Jan L. Y., Kuffler S. W. Further evidence for peptidergic transmission in sympathetic ganglia. Proc Natl Acad Sci U S A. 1980 Aug;77(8):5008–5012. doi: 10.1073/pnas.77.8.5008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KONZETT H., WASER P. G. Zur ganglionären Wirkung von Muscarin. Helv Physiol Pharmacol Acta. 1956;14(2):202–206. [PubMed] [Google Scholar]
- Kebabian J. W., Steiner A. L., Greengard P. Muscarinic cholinergic regulation of cyclic guanosine 3,5-monophosphate in autonomic ganglia: possible role in synaptic transmission. J Pharmacol Exp Ther. 1975 May;193(2):474–488. [PubMed] [Google Scholar]
- Kobayashi H., Libet B. Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J Physiol. 1970 Jun;208(2):353–372. doi: 10.1113/jphysiol.1970.sp009125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krnjević K., Pumain R., Renaud L. Effects of Ba2+ and tetraethylammonium on cortical neurones. J Physiol. 1971 May;215(1):223–245. doi: 10.1113/jphysiol.1971.sp009466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K., Koketsu K. Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Jpn J Physiol. 1976;26(6):651–669. doi: 10.2170/jjphysiol.26.651. [DOI] [PubMed] [Google Scholar]
- Kuba K., Koketsu K. Postsynaptic potentiation of the slow muscarinic excitatory response by tetraethylammonium chloride in the bullfrog sympathetic ganglion cells. Brain Res. 1977 Dec 2;137(2):381–386. doi: 10.1016/0006-8993(77)90351-1. [DOI] [PubMed] [Google Scholar]
- Kuba K., Koketsu K. The muscarinic effects of acetylcholine on the action potential of bullfrog sympathetic ganglion cells. Jpn J Physiol. 1976;26(6):703–716. doi: 10.2170/jjphysiol.26.703. [DOI] [PubMed] [Google Scholar]
- McAfee D. A., Yarowsky P. J. Calcium-dependent potentials in the mammalian sympathetic neurone. J Physiol. 1979 May;290(2):507–523. doi: 10.1113/jphysiol.1979.sp012787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLachlan E. M. The effects of strontium and barium ions at synapses in sympathetic ganglia. J Physiol. 1977 May;267(2):497–518. doi: 10.1113/jphysiol.1977.sp011823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
- Neher E. Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol. 1971 Jul;58(1):36–53. doi: 10.1085/jgp.58.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishi S., Soeda H., Koketsu K. Unusual nature of ganglionic slow EPSP studied by a voltage-clamp method. Life Sci. 1969 Jan 1;8(1):33–42. doi: 10.1016/0024-3205(69)90290-2. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
- Putney J. W., Jr, Weiss S. J., Van De Walle C. M., Haddas R. A. Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature. 1980 Mar 27;284(5754):345–347. doi: 10.1038/284345a0. [DOI] [PubMed] [Google Scholar]
- Salmon D. M., Honeyman T. W. Proposed mechanism of cholinergic action in smooth muscle. Nature. 1980 Mar 27;284(5754):344–345. doi: 10.1038/284344a0. [DOI] [PubMed] [Google Scholar]
- Schulman J. A., Weight F. F. Synaptic transmission: long-lasting potentiation by a postsynaptic mechanism. Science. 1976 Dec 24;194(4272):1437–1439. doi: 10.1126/science.188131. [DOI] [PubMed] [Google Scholar]
- Siggins G. R., Gruol D. L., Padjen A. L., Formans D. S. Purine and pyrimidine mononucleotides depolarise neurones of explanted amphibian sympathetic ganglia. Nature. 1977 Nov 17;270(5634):263–265. doi: 10.1038/270263a0. [DOI] [PubMed] [Google Scholar]
- TAKESHIGE C., VOLLE R. L. THE EFFECTS OF BARIUM AND OTHER INORGANIC CATIONS ON SYMPATHETIC GANGLIA. J Pharmacol Exp Ther. 1964 Dec;146:327–334. [PubMed] [Google Scholar]
- Volle R. L., Quenzer L. F., Patterson B. A., Alkadhi K. A., Henderson E. G. Cyclic guanosine 3':5'-monophosphate accumulation and 45Ca-uptake by rat superior cervical ganglia during preganglionic stimulation. J Pharmacol Exp Ther. 1981 Nov;219(2):338–343. [PubMed] [Google Scholar]
- Weight F. F., Petzold G., Greengard P. Guanosine 3',5'-monophosphate in sympathetic ganglia: increase assoicated with synaptic transmission. Science. 1974 Dec 6;186(4167):942–944. doi: 10.1126/science.186.4167.942. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Votava J. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science. 1970 Nov 13;170(3959):755–758. doi: 10.1126/science.170.3959.755. [DOI] [PubMed] [Google Scholar]