Analysis of the movement of Chlamydomonas flagella:" the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella (original) (raw)

Abstract

The mutation uni-1 gives rise to uniflagellate Chlamydomonas cells which rotate around a fixed point in the microscope field, so that the flagellar bending pattern can be photographed easily. This has allowed us to make a detailed analysis of the wild-type flagellar bending pattern and the bending patterns of flagella on several mutant strains. Cells containing uni-1, and recombinants of uni-1 with the suppressor mutations, suppf-1 and suppf-3, show the typical asymmetric bending pattern associated with forward swimming in Chlamydomonas, although suppf-1 flagella have about one-half the normal beta frequency, apparently as the result of defective function of the outer dynein arms. The pf-17 mutation has been shown to produce nonmotile flagella in which radial spoke heads and five characteristic axonemal polypeptides are missing. Recombinants containing pf-17 and either suppf-2 or suppf-3 have motile flagella, but still lack radial-spoke heads and the associated polypeptides. The flagellar bending pattern of these recombinants lacking radial-spoke heads is a nearly symmetric, large amplitude pattern which is quite unlike the wild-type pattern. However, the presence of an intact radial-spoke system is not required to convert active sliding into bending and is not required for bend initiation and bend propagation, since all of these processes are active in suppfpf-17 recombinants. The function of the radial-spoke system appears to be to convert the symmetric bending pattern displayed by these recombinants into the asymmetric bending pattern required for efficient swimming, by inhibiting the development of reverse bends during the recovery phase of the bending cycle.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Brokaw C. J. Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella. J Cell Biol. 1980 Oct;87(1):114–123. doi: 10.1083/jcb.87.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brokaw C. J., Benedict B. Mechanochemical coupling in flagella. I. Movement-dependent dephosphorylation of ATP by glycerinated spermatozoa. Arch Biochem Biophys. 1968 Jun;125(3):770–778. doi: 10.1016/0003-9861(68)90513-4. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J. Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol. 1979 Aug;82(2):401–411. doi: 10.1083/jcb.82.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brokaw C. J. Non-sinusoidal bending waves of sperm flagella. J Exp Biol. 1965 Aug;43(1):155–169. doi: 10.1242/jeb.43.1.155. [DOI] [PubMed] [Google Scholar]
  5. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldstein S. F. Asymmetric waveforms in echinoderm sperm flagella. J Exp Biol. 1977 Dec;71:157–170. doi: 10.1242/jeb.71.1.157. [DOI] [PubMed] [Google Scholar]
  7. Goldstein S. F. Form of developing bends in reactivated sperm flagella. J Exp Biol. 1976 Feb;64(1):173–184. doi: 10.1242/jeb.64.1.173. [DOI] [PubMed] [Google Scholar]
  8. Huang B., Piperno G., Luck D. J. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979 Apr 25;254(8):3091–3099. [PubMed] [Google Scholar]
  9. Huang B., Piperno G., Ramanis Z., Luck D. J. Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function. J Cell Biol. 1981 Jan;88(1):80–88. doi: 10.1083/jcb.88.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang B., Ramanis Z., Luck D. J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for Flagellar function. Cell. 1982 Jan;28(1):115–124. doi: 10.1016/0092-8674(82)90381-6. [DOI] [PubMed] [Google Scholar]
  11. Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
  12. Lindemann C. B., Fentie I., Rikmenspoel R. A selective effect of Ni2+ on wave initiation in bull sperm flagella. J Cell Biol. 1980 Nov;87(2 Pt 1):420–426. doi: 10.1083/jcb.87.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luck D., Piperno G., Ramanis Z., Huang B. Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3456–3460. doi: 10.1073/pnas.74.8.3456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Piperno G., Huang B., Luck D. J. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1600–1604. doi: 10.1073/pnas.74.4.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Piperno G., Luck D. J. Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. J Biol Chem. 1979 Apr 25;254(8):3084–3090. [PubMed] [Google Scholar]
  16. Rikmenspoel R., Sleigh M. A. Bending moments and elastic constants in cilia. J Theor Biol. 1970 Jul;28(1):81–100. doi: 10.1016/0022-5193(70)90065-2. [DOI] [PubMed] [Google Scholar]
  17. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmidt J. A., Eckert R. Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii. Nature. 1976 Aug 19;262(5570):713–715. doi: 10.1038/262713a0. [DOI] [PubMed] [Google Scholar]
  19. Shingyoji C., Murakami A., Takahashi K. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature. 1977 Jan 20;265(5591):269–270. doi: 10.1038/265269a0. [DOI] [PubMed] [Google Scholar]
  20. Sleigh M. A. Patterns of ciliary beating. Symp Soc Exp Biol. 1968;22:131–150. [PubMed] [Google Scholar]
  21. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Warner F. D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol. 1974 Oct;63(1):35–63. doi: 10.1083/jcb.63.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Witman G. B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. doi: 10.1083/jcb.76.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]