Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii (original) (raw)

Abstract

The complete nucleotide sequence (119,707 bp) of the black pine (Pinus thunbergii) chloroplast genome has been determined. It contains 4 rRNA genes and 32 tRNA genes. To our knowledge, the tRNAPro (GGG) gene has not been found in any other chloroplast genome analyzed. Sixty-one genes encoding proteins and 11 conserved open reading frames are also found. Extensive rearrangements are apparent in the chloroplast genome relative to those of other land plants. The most striking feature is the loss of all 11 functional genes (ndh genes) for subunits of a putative NADH dehydrogenase that are found in the chloroplast genomes of angiosperms and a bryophyte. Four ndh genes were completely lost and the other 7 genes remain as obvious pseudogenes. This unexpected finding raises the possibility that all ndh genes have been transferred to the nucleus or that an NADH dehydrogenase is not essential in black pine chloroplasts.

9794

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennoun P. Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4352–4356. doi: 10.1073/pnas.79.14.4352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choquet Y., Rahire M., Girard-Bascou J., Erickson J., Rochaix J. D. A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J. 1992 May;11(5):1697–1704. doi: 10.1002/j.1460-2075.1992.tb05220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldschmidt-Clermont M., Choquet Y., Girard-Bascou J., Michel F., Schirmer-Rahire M., Rochaix J. D. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell. 1991 Apr 5;65(1):135–143. doi: 10.1016/0092-8674(91)90415-u. [DOI] [PubMed] [Google Scholar]
  4. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  5. Haberhausen G., Zetsche K. Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Plant Mol Biol. 1994 Jan;24(1):217–222. doi: 10.1007/BF00040588. [DOI] [PubMed] [Google Scholar]
  6. Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993 Jul 25;21(15):3537–3544. doi: 10.1093/nar/21.15.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hipkins V. D., Tsai C. H., Strauss S. H. Sequence of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from a gymnosperm, Douglas fir. Plant Mol Biol. 1990 Sep;15(3):505–507. doi: 10.1007/BF00019168. [DOI] [PubMed] [Google Scholar]
  8. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  9. Igloi G. L., Meinke A., Döry I., Kössel H. Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: comparison between the derived protein primary structures from various organisms with respect to functional domains. Mol Gen Genet. 1990 May;221(3):379–394. doi: 10.1007/BF00259403. [DOI] [PubMed] [Google Scholar]
  10. Lidholm J., Gustafsson P. A three-step model for the rearrangement of the chloroplast trnK-psbA region of the gymnosperm Pinus contorta. Nucleic Acids Res. 1991 Jun 11;19(11):2881–2887. doi: 10.1093/nar/19.11.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lidholm J., Gustafsson P. Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol. 1991 Oct;17(4):787–798. doi: 10.1007/BF00037061. [DOI] [PubMed] [Google Scholar]
  12. Lidholm J., Gustafsson P. The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet. 1991 Jul;20(1-2):161–166. doi: 10.1007/BF00312780. [DOI] [PubMed] [Google Scholar]
  13. Lidholm J., Szmidt A., Gustafsson P. Duplication of the psbA gene in the chloroplast genome of two Pinus species. Mol Gen Genet. 1991 May;226(3):345–352. doi: 10.1007/BF00260645. [DOI] [PubMed] [Google Scholar]
  14. Lin C. H., Wu M. A ferredoxin-type iron-sulfur protein gene, frx B, is expressed in the chloroplasts of tobacco and spinach. Plant Mol Biol. 1990 Sep;15(3):449–455. doi: 10.1007/BF00019161. [DOI] [PubMed] [Google Scholar]
  15. Liu X. Q., Xu H., Huang C. Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol. 1993 Oct;23(2):297–308. doi: 10.1007/BF00029006. [DOI] [PubMed] [Google Scholar]
  16. Matsubayashi T., Wakasugi T., Shinozaki K., Yamaguchi-Shinozaki K., Zaita N., Hidaka T., Meng B. Y., Ohto C., Tanaka M., Kato A. Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet. 1987 Dec;210(3):385–393. doi: 10.1007/BF00327187. [DOI] [PubMed] [Google Scholar]
  17. Nixon P. J., Gounaris K., Coomber S. A., Hunter C. N., Dyer T. A., Barber J. psbG is not a photosystem two gene but may be an ndh gene. J Biol Chem. 1989 Aug 25;264(24):14129–14135. [PubMed] [Google Scholar]
  18. Palmer J. D., Thompson W. F. Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5533–5537. doi: 10.1073/pnas.78.9.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peltier G., Schmidt G. W. Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4791–4795. doi: 10.1073/pnas.88.11.4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reith M., Munholland J. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea. Plant Cell. 1993 Apr;5(4):465–475. doi: 10.1105/tpc.5.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scherer S. Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biochem Sci. 1990 Dec;15(12):458–462. doi: 10.1016/0968-0004(90)90296-n. [DOI] [PubMed] [Google Scholar]
  22. Shimada H., Fukuta M., Ishikawa M., Sugiura M. Rice chloroplast RNA polymerase genes: the absence of an intron in rpoC1 and the presence of an extra sequence in rpoC2. Mol Gen Genet. 1990 May;221(3):395–402. doi: 10.1007/BF00259404. [DOI] [PubMed] [Google Scholar]
  23. Shimada H., Sugiura M. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res. 1991 Mar 11;19(5):983–995. doi: 10.1093/nar/19.5.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shinohara K., Murakami A., Fujita Y. Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons. Plant Physiol. 1992 Jan;98(1):39–43. doi: 10.1104/pp.98.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Staden R. Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):521–538. doi: 10.1093/nar/12.1part2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strauss S. H., Palmer J. D., Howe G. T., Doerksen A. H. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3898–3902. doi: 10.1073/pnas.85.11.3898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sugiura M. The chloroplast genome. Plant Mol Biol. 1992 May;19(1):149–168. doi: 10.1007/BF00015612. [DOI] [PubMed] [Google Scholar]
  29. Suzuki J. Y., Bauer C. E. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell. 1992 Aug;4(8):929–940. doi: 10.1105/tpc.4.8.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsai C. H., Strauss S. H. Dispersed repetitive sequences in the chloroplast genome of Douglas-fir. Curr Genet. 1989 Sep;16(3):211–218. doi: 10.1007/BF00391479. [DOI] [PubMed] [Google Scholar]
  31. Tsudzuki J., Ito S., Tsudzuki T., Wakasugi T., Sugiura M. A new gene encoding tRNA(Pro) (GGG) is present in the chloroplast genome of black pine: a compilation of 32 tRNA genes from black pine chloroplasts. Curr Genet. 1994 Aug;26(2):153–158. doi: 10.1007/BF00313804. [DOI] [PubMed] [Google Scholar]
  32. Tsudzuki J., Nakashima K., Tsudzuki T., Hiratsuka J., Shibata M., Wakasugi T., Sugiura M. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet. 1992 Mar;232(2):206–214. doi: 10.1007/BF00279998. [DOI] [PubMed] [Google Scholar]
  33. Vera A., Sugiura M. A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J. 1994 May 1;13(9):2211–2217. doi: 10.1002/j.1460-2075.1994.tb06498.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weglöhner W., Subramanian A. R. Nucleotide sequence of maize chloroplast rpl32: completing the apparent set of plastid ribosomal protein genes and their tentative operon organization. Plant Mol Biol. 1993 Feb;21(3):543–548. doi: 10.1007/BF00028811. [DOI] [PubMed] [Google Scholar]
  35. Whelan J., Young S., Day D. A. Cloning of ndhK from soybean chloroplasts using antibodies raised to mitochondrial complex I. Plant Mol Biol. 1992 Dec;20(5):887–895. doi: 10.1007/BF00027160. [DOI] [PubMed] [Google Scholar]
  36. Wolfe K. H., Morden C. W., Palmer J. D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648–10652. doi: 10.1073/pnas.89.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wu M., Nie Z. Q., Yang J. The 18-kD protein that binds to the chloroplast DNA replicative origin is an iron-sulfur protein related to a subunit of NADH dehydrogenase. Plant Cell. 1989 May;1(5):551–557. doi: 10.1105/tpc.1.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]