Genetic recombination events which position the friedreich ataxia locus proximal to the D9S15/D9S5 linkage group on chromosome 9q (original) (raw)
Abstract
The absence of recombination between the mutation causing Friedreich ataxia and the two loci which originally assigned the disease locus to chromosome 9 has slowed attempts to isolate and characterize the genetic defect underlying this neurodegenerative disorder. A proximity of less than 1 cM to the linkage group has been proved by the generation of high maximal lod score (Z) to each of the two tightly linked markers D9S15 (Z = 96.69; recombination fraction [θ] = .01) and D9S5 (Z = 98.22; θ = .01). We report here recombination events which indicate that the FRDA locus is located centromeric to the D9S15/D9S5 linkage group, with the most probable order being cen–FRDA–D9S5–D9S15–qter. However, orientation of the markers with respect to the centromere, critical to the positional cloning strategy, remains to be resolved definitively.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlson M., Nakamura Y., Krapcho K., Fujimoto E., O'Connell P., Leppert M., Lathrop G. M., Lalouel J. M., White R. Isolation and mapping of a polymorphic DNA sequence pMCT112 on chromosome 9q (D9S15). Nucleic Acids Res. 1987 Dec 23;15(24):10614–10614. doi: 10.1093/nar/15.24.10614-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain S., Shaw J., Rowland A., Wallis J., South S., Nakamura Y., von Gabain A., Farrall M., Williamson R. Mapping of mutation causing Friedreich's ataxia to human chromosome 9. Nature. 1988 Jul 21;334(6179):248–250. doi: 10.1038/334248a0. [DOI] [PubMed] [Google Scholar]
- Chamberlain S., Shaw J., Wallis J., Rowland A., Chow L., Farrall M., Keats B., Richter A., Roy M., Melancon S. Genetic homogeneity at the Friedreich ataxia locus on chromosome 9. Am J Hum Genet. 1989 Apr;44(4):518–521. [PMC free article] [PubMed] [Google Scholar]
- Fujita R., Agid Y., Trouillas P., Seck A., Tommasi-Davenas C., Driesel A. J., Olek K., Grzeschik K. H., Nakamura Y., Mandel J. L. Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics. 1989 Jan;4(1):110–111. doi: 10.1016/0888-7543(89)90323-6. [DOI] [PubMed] [Google Scholar]
- Fujita R., Hanauer A., Sirugo G., Heilig R., Mandel J. L. Additional polymorphisms at marker loci D9S5 and D9S15 generate extended haplotypes in linkage disequilibrium with Friedreich ataxia. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1796–1800. doi: 10.1073/pnas.87.5.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita R., Hanauer A., Vincent A., Mandel J. L., Koenig M. Physical mapping of two loci (D9S5 and D9S15) tightly linked to Friedreich ataxia locus (FRDA) and identification of nearby CpG islands by pulse-field gel electrophoresis. Genomics. 1991 Aug;10(4):915–920. doi: 10.1016/0888-7543(91)90179-i. [DOI] [PubMed] [Google Scholar]
- Fujita R., Sirugo G., Duclos F., Abderrahim H., Le Paslier D., Cohen D., Brownstein B. H., Schlessinger D., Mandel J. L., Koenig M. A 530kb YAC contig tightly linked to the Friedreich ataxia locus contains five CpG clusters and a new highly polymorphic microsatellite. Hum Genet. 1992 Jul;89(5):531–538. doi: 10.1007/BF00219179. [DOI] [PubMed] [Google Scholar]
- Geoffroy G., Barbeau A., Breton G., Lemieux B., Aube M., Leger C., Bouchard J. P. Clinical description and roentgenologic evaluation of patients with Friedreich's ataxia. Can J Neurol Sci. 1976 Nov;3(4):279–286. doi: 10.1017/s0317167100025464. [DOI] [PubMed] [Google Scholar]
- Hanauer A., Chery M., Fujita R., Driesel A. J., Gilgenkrantz S., Mandel J. L. The Friedreich ataxia gene is assigned to chromosome 9q13-q21 by mapping of tightly linked markers and shows linkage disequilibrium with D9S15. Am J Hum Genet. 1990 Jan;46(1):133–137. [PMC free article] [PubMed] [Google Scholar]
- Hanauer A., Fujita R., Trouillas P., Tommasi-Davenas C., Agid Y., Seck A., Mandel J. L. Prenatal diagnosis of Friedreich ataxia. Lancet. 1990 May 5;335(8697):1102–1102. doi: 10.1016/0140-6736(90)92679-c. [DOI] [PubMed] [Google Scholar]
- Harding A. E. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981 Sep;104(3):589–620. doi: 10.1093/brain/104.3.589. [DOI] [PubMed] [Google Scholar]
- Harding A. E., Hewer R. L. The heart disease of Friedreich's ataxia: a clinical and electrocardiographic study of 115 patients, with an analysis of serial electrocardiographic changes in 30 cases. Q J Med. 1983 Autumn;52(208):489–502. [PubMed] [Google Scholar]
- Keats B. J., Ward L. J., Shaw J., Wickremasinghe A., Chamberlain S. "Acadian" and "classical" forms of Friedreich ataxia are most probably caused by mutations at the same locus. Am J Med Genet. 1989 Jun;33(2):266–268. doi: 10.1002/ajmg.1320330224. [DOI] [PubMed] [Google Scholar]
- Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
- Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
- Orzechowski H. D., Hennig J., Winter P., Grzeschik K. H., Olek K., Driesel A. J. A human single-copy DNA probe (DR 47) detects a Taq I RFLP on chromosome 9 (D9S5). Nucleic Acids Res. 1987 Aug 11;15(15):6310–6310. doi: 10.1093/nar/15.15.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pandolfo M., Sirugo G., Antonelli A., Weitnauer L., Ferretti L., Leone M., Dones I., Cerino A., Fujita R., Hanauer A. Friedreich ataxia in Italian families: genetic homogeneity and linkage disequilibrium with the marker loci D9S5 and D9S15. Am J Hum Genet. 1990 Aug;47(2):228–235. [PMC free article] [PubMed] [Google Scholar]
- Shaw J., Lichter P., Driesel A. J., Williamson R., Chamberlain S. Regional localisation of the Friedreich ataxia locus to human chromosome 9q13----q21.1. Cytogenet Cell Genet. 1990;53(4):221–224. doi: 10.1159/000132936. [DOI] [PubMed] [Google Scholar]
- Sirugo G., Keats B., Fujita R., Duclos F., Purohit K., Koenig M., Mandel J. L. Friedreich ataxia in Louisiana Acadians: demonstration of a founder effect by analysis of microsatellite-generated extended haplotypes. Am J Hum Genet. 1992 Mar;50(3):559–566. [PMC free article] [PubMed] [Google Scholar]
- Wallis J., Nakamura Y. A new accI polymorphism for pMCT112 [D9S15]. Nucleic Acids Res. 1989 Jun 26;17(12):4904–4904. doi: 10.1093/nar/17.12.4904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis J., Shaw J., Wilkes D., Farrall M., Williamson R., Chamberlain S., Skare J. C., Milunsky A. Prenatal diagnosis of Friedreich ataxia. Am J Med Genet. 1989 Nov;34(3):458–461. doi: 10.1002/ajmg.1320340327. [DOI] [PubMed] [Google Scholar]
- Wallis J., Williamson R., Chamberlain S. Identification of a hypervariable microsatellite polymorphism within D9S15 tightly linked to Friedrich's ataxia. Hum Genet. 1990 Jun;85(1):98–100. doi: 10.1007/BF00276331. [DOI] [PubMed] [Google Scholar]
- Wilkes D., Shaw J., Anand R., Riley J., Winter P., Wallis J., Driesel A. G., Williamson R., Chamberlain S. Identification of CpG islands in a physical map encompassing the Friedreich's ataxia locus. Genomics. 1991 Jan;9(1):90–95. doi: 10.1016/0888-7543(91)90224-3. [DOI] [PubMed] [Google Scholar]
- Wolff R. K., Nakamura Y., White R. Molecular characterization of a spontaneously generated new allele at a VNTR locus: no exchange of flanking DNA sequence. Genomics. 1988 Nov;3(4):347–351. doi: 10.1016/0888-7543(88)90126-7. [DOI] [PubMed] [Google Scholar]
- Yoshida A., Chen S. H. Restriction fragment length polymorphism of human aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2 loci. Hum Genet. 1989 Sep;83(2):204–204. doi: 10.1007/BF00286722. [DOI] [PubMed] [Google Scholar]