Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects (original) (raw)

Abstract

The molecular basis of bilayer tubule formation in hydrated galactosylceramide (GalCer) dispersions has been investigated by synthesizing different chain-pure GalCers and examining their aqueous mesomorphic phase structure by freeze fracture and negative-stain electron microscopy. Thermotropic characterization of the GalCer species by differential scanning calorimetry provided supplementary information that verified the phase state under which morphological observations were carried out. Under aqueous conditions and at room temperature, N-24:1 delta 15(cis) GalSph, the predominant monounsaturated, nonhydroxy acyl species of bovine brain GalCer (NFA-GalCer), formed cylindrical mesomorphic self-assemblies consisting almost exclusively of "nanotubes," i.e., lipid bilayer tubules of relatively uniform length and diameter (length, 250-400 nm; diameter, 25-30 nm). In contrast, N-24:0 GalSph, the major saturated, nonhydroxy acyl species of bovine brain GalCer, displayed no tendency to form these relatively small "nanotubes." Rather, N-24:0 GalSph formed larger, variable-length ribbon-like structures (length, 5,000-10,000 nm) that often appeared to undulate and, occasionally, appeared to be helically twisted. Interestingly, bovine brain GalCer, which contains high levels of the N-24:1 delta 15(cis) and N-24:0 species as well as 2-hydroxy acyl chains, formed multilamellar liposomes of variable size and showed little tendency to form cylindrical structures. This result suggested that changes to the polar interface/headgroup region imparted by the 2-hydroxy acyl species strongly influenced bilayer tubule and cylinder formation in GalCer. To define this influence more clearly, other sphingoid-based and glycerol-based lipids were investigated. Morphological characterization of N-24:1 delta 15(cis) sphingosylphosphorylcholine (24:1 SM) revealed no evidence of bilayer cylinder or tubule formation. Similar results were obtained with aqueous dispersions of 1-palmitoyl-2-nervonoyl phosphatidylcholine (16:0, 24:1 PC). Hence, the bulkier, more hydrated, zwitterionic phosphocholine headgroup inhibited the formation of bilayer nanotubes and cylinders under physiological saline conditions.

1976

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad T. Y., Sparrow J. T., Morrisett J. D. Fluorine-, pyrene-, and nitroxide-labeled sphingomyelin: semi-synthesis and thermotropic properties. J Lipid Res. 1985 Sep;26(9):1160–1165. [PubMed] [Google Scholar]
  2. Ali S., Brockman H. L., Brown R. E. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain. Biochemistry. 1991 Nov 26;30(47):11198–11205. doi: 10.1021/bi00111a002. [DOI] [PubMed] [Google Scholar]
  3. Ali S., Smaby J. M., Brown R. E. Acyl structure regulates galactosylceramide's interfacial interactions. Biochemistry. 1993 Nov 2;32(43):11696–11703. doi: 10.1021/bi00094a028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Archibald D. D., Mann S. Self-assembled microstructures from 1,2-ethanediol suspensions of pure and binary mixtures of neutral and acidic biological galactosylceramides. Chem Phys Lipids. 1994 Jan;69(1):51–64. doi: 10.1016/0009-3084(94)90027-2. [DOI] [PubMed] [Google Scholar]
  5. Archibald D. D., Yager P. Microstructural polymorphism in bovine brain galactocerebroside and its two major subfractions. Biochemistry. 1992 Sep 22;31(37):9045–9055. doi: 10.1021/bi00152a048. [DOI] [PubMed] [Google Scholar]
  6. Aveldaño M. I., Horrocks L. A. Quantitative release of fatty acids from lipids by a simple hydrolysis procedure. J Lipid Res. 1983 Aug;24(8):1101–1105. [PubMed] [Google Scholar]
  7. Boggs J. M., Koshy K. M., Rangaraj G. Influence of structural modifications on the phase behavior of semi-synthetic cerebroside sulfate. Biochim Biophys Acta. 1988 Mar 3;938(3):361–372. doi: 10.1016/0005-2736(88)90134-4. [DOI] [PubMed] [Google Scholar]
  8. Boggs J. M., Koshy K. M., Rangaraj G. Interdigitated lipid bilayers of long acyl chain species of cerebroside sulfate. A fatty acid spin label study. Biochim Biophys Acta. 1988 Mar 3;938(3):373–385. doi: 10.1016/0005-2736(88)90135-6. [DOI] [PubMed] [Google Scholar]
  9. Brown R. E., Anderson W. H., Kulkarni V. S. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine. Biophys J. 1995 Apr;68(4):1396–1405. doi: 10.1016/S0006-3495(95)80312-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown R. E., Hyland K. J. Spontaneous transfer of ganglioside GM1 from its micelles to lipid vesicles of differing size. Biochemistry. 1992 Nov 3;31(43):10602–10609. doi: 10.1021/bi00158a024. [DOI] [PubMed] [Google Scholar]
  11. Bunow M. R., Levin I. W. Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys J. 1980 Dec;32(3):1007–1021. doi: 10.1016/S0006-3495(80)85032-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bunow M. R. Two gel states of cerebrosides. Calorimetric and Raman spectroscopic evidence. Biochim Biophys Acta. 1979 Sep 28;574(3):542–546. doi: 10.1016/0005-2760(79)90250-9. [DOI] [PubMed] [Google Scholar]
  13. Chung D. S., Benedek G. B., Konikoff F. M., Donovan J. M. Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11341–11345. doi: 10.1073/pnas.90.23.11341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cleary M. P., Phillips F. C., Morton R. A. Liver, serum and adipose tissue fatty acid composition in suckling Zucker rats. Lipids. 1994 Nov;29(11):753–758. doi: 10.1007/BF02536696. [DOI] [PubMed] [Google Scholar]
  15. Cohen R., Barenholz Y., Gatt S., Dagan A. Preparation and characterization of well defined D-erythro sphingomyelins. Chem Phys Lipids. 1984 Oct;35(4):371–384. doi: 10.1016/0009-3084(84)90079-3. [DOI] [PubMed] [Google Scholar]
  16. Curatolo W., Jungalwala F. B. Phase behavior of galactocerebrosides from bovine brain. Biochemistry. 1985 Nov 5;24(23):6608–6613. doi: 10.1021/bi00344a046. [DOI] [PubMed] [Google Scholar]
  17. Curatolo W., Neuringer L. J. The effects of cerebrosides on model membrane shape. J Biol Chem. 1986 Dec 25;261(36):17177–17182. [PubMed] [Google Scholar]
  18. Curatolo W. The physical properties of glycolipids. Biochim Biophys Acta. 1987 Jun 24;906(2):111–136. doi: 10.1016/0304-4157(87)90008-6. [DOI] [PubMed] [Google Scholar]
  19. Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry. 1982 Apr 13;21(8):1761–1764. doi: 10.1021/bi00537a010. [DOI] [PubMed] [Google Scholar]
  20. Díaz R. S., Monreal J. Unusual low proton permeability of liposomes prepared from the endogenous myelin lipids. J Neurochem. 1994 May;62(5):2022–2029. doi: 10.1046/j.1471-4159.1994.62052022.x. [DOI] [PubMed] [Google Scholar]
  21. Forte T. M., Nordhausen R. W. Electron microscopy of negatively stained lipoproteins. Methods Enzymol. 1986;128:442–457. doi: 10.1016/0076-6879(86)28086-6. [DOI] [PubMed] [Google Scholar]
  22. Gardam M., Silvius J. R. Intermixing of dipalmitoylphosphatidylcholine with phospho- and sphingolipids bearing highly asymmetric hydrocarbon chains. Biochim Biophys Acta. 1989 Apr 28;980(3):319–325. doi: 10.1016/0005-2736(89)90319-2. [DOI] [PubMed] [Google Scholar]
  23. Jackson M., Johnston D. S., Chapman D. Differential scanning calorimetric and Fourier transform infrared spectroscopic investigations of cerebroside polymorphism. Biochim Biophys Acta. 1988 Oct 20;944(3):497–506. doi: 10.1016/0005-2736(88)90521-4. [DOI] [PubMed] [Google Scholar]
  24. Johnson S. B., Brown R. E. Simplified derivatization for determining sphingolipid fatty acyl composition by gas chromatography-mass spectrometry. J Chromatogr. 1992 Jul 17;605(2):281–286. doi: 10.1016/0021-9673(92)85248-r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kodama M., Miyata T., Yokoyama T. Crystalline cylindrical structures of Na(+)-bound dimyristoylphosphatidylglycerol as revealed by microcalorimetry and electron microscopy. Biochim Biophys Acta. 1993 Jun 12;1168(2):243–248. [PubMed] [Google Scholar]
  26. Konikoff F. M., Chung D. S., Donovan J. M., Small D. M., Carey M. C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J Clin Invest. 1992 Sep;90(3):1155–1160. doi: 10.1172/JCI115935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koynova R., Caffrey M. Phases and phase transitions of the sphingolipids. Biochim Biophys Acta. 1995 Apr 6;1255(3):213–236. doi: 10.1016/0005-2760(94)00202-a. [DOI] [PubMed] [Google Scholar]
  28. Lapidot Y., Rappoport S., Wolman Y. Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res. 1967 Mar;8(2):142–145. [PubMed] [Google Scholar]
  29. Lee D. C., Miller I. R., Chapman D. An infrared spectroscopic study of metastable and stable forms of hydrated cerebroside bilayers. Biochim Biophys Acta. 1986 Jul 24;859(2):266–270. doi: 10.1016/0005-2736(86)90222-1. [DOI] [PubMed] [Google Scholar]
  30. Lin H., Huang C. Eutectic phase behavior of 1-stearoyl-2-caprylphosphatidylcholine and dimyristoylphosphatidylcholine mixtures. Biochim Biophys Acta. 1988 Dec 8;946(1):178–184. doi: 10.1016/0005-2736(88)90471-3. [DOI] [PubMed] [Google Scholar]
  31. Lin K. C., Weis R. M., McConnell H. M. Induction of helical liposomes by Ca2+-mediated intermembrane binding. Nature. 1982 Mar 11;296(5853):164–165. doi: 10.1038/296164a0. [DOI] [PubMed] [Google Scholar]
  32. Maggio B., Albert J., Yu R. K. Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1988 Nov 22;945(2):145–160. doi: 10.1016/0005-2736(88)90477-4. [DOI] [PubMed] [Google Scholar]
  33. Maggio B. The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. Prog Biophys Mol Biol. 1994;62(1):55–117. doi: 10.1016/0079-6107(94)90006-x. [DOI] [PubMed] [Google Scholar]
  34. Mason J. T., Broccoli A. V., Huang C. A method for the synthesis of isomerically pure saturated mixed-chain phosphatidylcholines. Anal Biochem. 1981 May 1;113(1):96–101. doi: 10.1016/0003-2697(81)90049-x. [DOI] [PubMed] [Google Scholar]
  35. Mason J. T., Huang C. Hydrodynamic analysis of egg phosphatidylcholine vesicles. Ann N Y Acad Sci. 1978;308:29–49. doi: 10.1111/j.1749-6632.1978.tb22012.x. [DOI] [PubMed] [Google Scholar]
  36. Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
  37. Mishima K., Ogihara T., Tomita M., Satoh K. Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids. 1992 Sep;62(2):87–91. doi: 10.1016/0009-3084(92)90086-5. [DOI] [PubMed] [Google Scholar]
  38. Naito M., Takahashi K., Hojo H. An ultrastructural and experimental study on the development of tubular structures in the lysosomes of Gaucher cells. Lab Invest. 1988 May;58(5):590–598. [PubMed] [Google Scholar]
  39. O'Brien J. S., Sampson E. L. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965 Oct;6(4):537–544. [PubMed] [Google Scholar]
  40. Radin N. S. Preparation of psychosines (1-O-hexosyl sphingosine) from cerebrosides. Lipids. 1974 May;9(5):358–360. doi: 10.1007/BF02533114. [DOI] [PubMed] [Google Scholar]
  41. Reed R. A., Shipley G. G. Effect of chain unsaturation on the structure and thermotropic properties of galactocerebrosides. Biophys J. 1989 Feb;55(2):281–292. doi: 10.1016/S0006-3495(89)82803-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reed R. A., Shipley G. G. Structure and metastability of N-lignocerylgalactosylsphingosine (cerebroside) bilayers. Biochim Biophys Acta. 1987 Jan 26;896(2):153–164. doi: 10.1016/0005-2736(87)90175-1. [DOI] [PubMed] [Google Scholar]
  43. Rudolph A. S., Burke T. G. A Fourier-transform infrared spectroscopic study of the polymorphic phase behavior of 1,2- bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine; a polymerizable lipid which forms novel microstructures. Biochim Biophys Acta. 1987 Sep 3;902(3):349–359. doi: 10.1016/0005-2736(87)90203-3. [DOI] [PubMed] [Google Scholar]
  44. Rudolph A. S., Ratna B. R., Kahn B. Self-assembling phospholipid filaments. Nature. 1991 Jul 4;352(6330):52–55. doi: 10.1038/352052a0. [DOI] [PubMed] [Google Scholar]
  45. Ruocco M. J., Shipley G. G., Oldfield E. Galactocerebroside-phospholipid interactions in bilayer membranes. Biophys J. 1983 Jul;43(1):91–101. doi: 10.1016/S0006-3495(83)84327-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  47. Schnur J. M. Lipid tubules: a paradigm for molecularly engineered structures. Science. 1993 Dec 10;262(5140):1669–1676. doi: 10.1126/science.262.5140.1669. [DOI] [PubMed] [Google Scholar]
  48. Schnur J. M., Ratna B. R., Selinger J. V., Singh A., Jyothi G., Easwaran K. R. Diacetylenic lipid tubules: experimental evidence for a chiral molecular architecture. Science. 1994 May 13;264(5161):945–947. doi: 10.1126/science.264.5161.945. [DOI] [PubMed] [Google Scholar]
  49. Schwarzmann G., Sandhoff K. Lysogangliosides: synthesis and use in preparing labeled gangliosides. Methods Enzymol. 1987;138:319–341. doi: 10.1016/0076-6879(87)38028-0. [DOI] [PubMed] [Google Scholar]
  50. Selinger Z., Lapidot Y. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res. 1966 Jan;7(1):174–175. [PubMed] [Google Scholar]
  51. Smaby J. M., Brockman H. L., Brown R. E. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation. Biochemistry. 1994 Aug 9;33(31):9135–9142. doi: 10.1021/bi00197a016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Svennerholm L., Boström K., Fredman P., Jungbjer B., Månsson J. E., Rynmark B. M. Membrane lipids of human peripheral nerve and spinal cord. Biochim Biophys Acta. 1992 Sep 22;1128(1):1–7. doi: 10.1016/0005-2760(92)90250-y. [DOI] [PubMed] [Google Scholar]
  53. Thomas B. N., Safinya C. R., Plano R. J., Clark N. A. Lipid tubule self-assembly: length dependence on cooling rate through a first-order phase transition. Science. 1995 Mar 17;267(5204):1635–1638. doi: 10.1126/science.267.5204.1635. [DOI] [PubMed] [Google Scholar]
  54. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  55. Wang Z. Q., Lin H. N., Li S., Huang C. H. Phase transition behavior and molecular structures of monounsaturated phosphatidylcholines. Calorimetric studies and molecular mechanics simulations. J Biol Chem. 1995 Feb 3;270(5):2014–2023. doi: 10.1074/jbc.270.5.2014. [DOI] [PubMed] [Google Scholar]
  56. Yager D. R., Bachenheimer S. L. Synthesis and metabolism of cellular transcripts in HSV-1 infected cells. Virus Genes. 1988 Mar;1(2):135–148. doi: 10.1007/BF00555933. [DOI] [PubMed] [Google Scholar]
  57. Yager P., Schoen P. E., Davies C., Price R., Singh A. Structure of lipid tubules formed from a polymerizable lecithin. Biophys J. 1985 Dec;48(6):899–906. doi: 10.1016/S0006-3495(85)83852-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yunis E. J., Lee R. E. Tubules of globoid leukodystrophy: a right-handed helix. Science. 1970 Jul 3;169(3940):64–66. doi: 10.1126/science.169.3940.64. [DOI] [PubMed] [Google Scholar]