Pharmacological analysis of dopamine stimulation of [35S]-GTP gamma S binding via human D2short and D2long dopamine receptors expressed in recombinant cells (original) (raw)
Abstract
1. The activation of G-proteins by agonist-occupied D2 or D3 dopamine receptors in membranes from recombinant cells expressing the cloned receptors has been analysed by a [35S]-guanosine 5'-[gamma-thio] triphosphate ([35S]-GTP gamma S) binding assay. 2. The rate of [35S]-GTP gamma S binding was increased by dopamine in a dose-dependent manner in membranes from CHO cells stably expressing either the D2short or D2long dopamine receptor. 3. The dopamine-induced stimulation of [35S]-GTP gamma S binding could be inhibited by a range of antagonists. Affinities for antagonists derived from the inhibition of the dopamine stimulation of [35S]-GTP gamma S binding correlated very well with affinities derived from radioligand binding studies. 4. When the maximum [35S]-GTP gamma S binding responses stimulated by dopamine acting at different receptor subtypes were compared, there was a tendency for the stimulation via the D2short receptor to be greater than via the D2long receptor and for the stimulation via the D3 dopamine receptor to be less than for either D2 receptor. These differences in maximal response were also seen when the inhibitory effects of dopamine on adenylyl cyclase via the three receptor subtypes were compared. 5. The stimulation of [35S]-GTP gamma S binding by dopamine in membranes from recombinant cells therefore provides an excellent system for studying the molecular nature of agonism and the receptor/G-protein interactions for these receptors.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asano T., Ross E. M. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles. Biochemistry. 1984 Nov 6;23(23):5467–5471. doi: 10.1021/bi00318a014. [DOI] [PubMed] [Google Scholar]
- Black J. W., Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983 Dec 22;220(1219):141–162. doi: 10.1098/rspb.1983.0093. [DOI] [PubMed] [Google Scholar]
- Black J. W., Shankley N. P. Interpretation of agonist affinity estimations: the question of distributed receptor states. Proc R Soc Lond B Biol Sci. 1990 Jun 22;240(1299):503–518. doi: 10.1098/rspb.1990.0051. [DOI] [PubMed] [Google Scholar]
- Castro S. W., Strange P. G. Coupling of D2 and D3 dopamine receptors to G-proteins. FEBS Lett. 1993 Jan 11;315(3):223–226. doi: 10.1016/0014-5793(93)81168-y. [DOI] [PubMed] [Google Scholar]
- Castro S. W., Strange P. G. Differences in the ligand binding properties of the short and long versions of the D2 dopamine receptor. J Neurochem. 1993 Jan;60(1):372–375. doi: 10.1111/j.1471-4159.1993.tb05863.x. [DOI] [PubMed] [Google Scholar]
- Chio C. L., Drong R. F., Riley D. T., Gill G. S., Slightom J. L., Huff R. M. D4 dopamine receptor-mediated signaling events determined in transfected Chinese hamster ovary cells. J Biol Chem. 1994 Apr 22;269(16):11813–11819. [PubMed] [Google Scholar]
- Chio C. L., Lajiness M. E., Huff R. M. Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol. 1994 Jan;45(1):51–60. [PubMed] [Google Scholar]
- Civelli O., Bunzow J. R., Grandy D. K. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993;33:281–307. doi: 10.1146/annurev.pa.33.040193.001433. [DOI] [PubMed] [Google Scholar]
- Conklin B. R., Bourne H. R. Structural elements of G alpha subunits that interact with G beta gamma, receptors, and effectors. Cell. 1993 May 21;73(4):631–641. doi: 10.1016/0092-8674(93)90245-l. [DOI] [PubMed] [Google Scholar]
- Costa T., Ogino Y., Munson P. J., Onaran H. O., Rodbard D. Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol. 1992 Mar;41(3):549–560. [PubMed] [Google Scholar]
- De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
- Elazar Z., Siegel G., Fuchs S. Association of two pertussis toxin-sensitive G-proteins with the D2-dopamine receptor from bovine striatum. EMBO J. 1989 Aug;8(8):2353–2357. doi: 10.1002/j.1460-2075.1989.tb08363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freissmuth M., Casey P. J., Gilman A. G. G proteins control diverse pathways of transmembrane signaling. FASEB J. 1989 Aug;3(10):2125–2131. [PubMed] [Google Scholar]
- Hayes G., Biden T. J., Selbie L. A., Shine J. Structural subtypes of the dopamine D2 receptor are functionally distinct: expression of the cloned D2A and D2B subtypes in a heterologous cell line. Mol Endocrinol. 1992 Jun;6(6):920–926. doi: 10.1210/mend.6.6.1323056. [DOI] [PubMed] [Google Scholar]
- Hilf G., Gierschik P., Jakobs K. H. Muscarinic acetylcholine receptor-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur J Biochem. 1989 Dec 22;186(3):725–731. doi: 10.1111/j.1432-1033.1989.tb15266.x. [DOI] [PubMed] [Google Scholar]
- Lazareno S., Birdsall N. J. Estimation of competitive antagonist affinity from functional inhibition curves using the Gaddum, Schild and Cheng-Prusoff equations. Br J Pharmacol. 1993 Aug;109(4):1110–1119. doi: 10.1111/j.1476-5381.1993.tb13737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazareno S., Birdsall N. J. Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol. 1993 Aug;109(4):1120–1127. doi: 10.1111/j.1476-5381.1993.tb13738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazareno S., Farries T., Birdsall N. J. Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci. 1993;52(5-6):449–456. doi: 10.1016/0024-3205(93)90301-i. [DOI] [PubMed] [Google Scholar]
- Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
- Liu Y. F., Jakobs K. H., Rasenick M. M., Albert P. R. G protein specificity in receptor-effector coupling. Analysis of the roles of G0 and Gi2 in GH4C1 pituitary cells. J Biol Chem. 1994 May 13;269(19):13880–13886. [PubMed] [Google Scholar]
- Malmberg A., Jackson D. M., Eriksson A., Mohell N. Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol. 1993 May;43(5):749–754. [PubMed] [Google Scholar]
- Montmayeur J. P., Borrelli E. Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3135–3139. doi: 10.1073/pnas.88.8.3135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montmayeur J. P., Guiramand J., Borrelli E. Preferential coupling between dopamine D2 receptors and G-proteins. Mol Endocrinol. 1993 Feb;7(2):161–170. doi: 10.1210/mend.7.2.7682286. [DOI] [PubMed] [Google Scholar]
- Ross E. M. Signal sorting and amplification through G protein-coupled receptors. Neuron. 1989 Aug;3(2):141–152. doi: 10.1016/0896-6273(89)90027-5. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Senogles S. E., Spiegel A. M., Padrell E., Iyengar R., Caron M. G. Specificity of receptor-G protein interactions. Discrimination of Gi subtypes by the D2 dopamine receptor in a reconstituted system. J Biol Chem. 1990 Mar 15;265(8):4507–4514. [PubMed] [Google Scholar]
- Senogles S. E. The D2 dopamine receptor isoforms signal through distinct Gi alpha proteins to inhibit adenylyl cyclase. A study with site-directed mutant Gi alpha proteins. J Biol Chem. 1994 Sep 16;269(37):23120–23127. [PubMed] [Google Scholar]
- Sibley D. R., Monsma F. J., Jr Molecular biology of dopamine receptors. Trends Pharmacol Sci. 1992 Feb;13(2):61–69. doi: 10.1016/0165-6147(92)90025-2. [DOI] [PubMed] [Google Scholar]
- Thomas D. R., Faruq S. A., Balcarek J. M., Brown A. M. Pharmacological characterisation of [35S]-GTPgammaS binding to Chinese hamster ovary cell membranes stably expressing cloned human 5-HT1D receptor subtypes. J Recept Signal Transduct Res. 1995 Jan-Mar;15(1-4):199–211. doi: 10.3109/10799899509045217. [DOI] [PubMed] [Google Scholar]
- Tian W. N., Duzic E., Lanier S. M., Deth R. C. Determinants of alpha 2-adrenergic receptor activation of G proteins: evidence for a precoupled receptor/G protein state. Mol Pharmacol. 1994 Mar;45(3):524–531. [PubMed] [Google Scholar]
- Vallar L., Meldolesi J. Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci. 1989 Feb;10(2):74–77. doi: 10.1016/0165-6147(89)90082-5. [DOI] [PubMed] [Google Scholar]
- Wreggett K. A., De Léan A. The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol Pharmacol. 1984 Sep;26(2):214–227. [PubMed] [Google Scholar]