Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling (original) (raw)
Abstract
The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander J. W., Gottschlich M. M. Nutritional immunomodulation in burn patients. Crit Care Med. 1990 Feb;18(2 Suppl):S149–S153. [PubMed] [Google Scholar]
- Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 1986 Mar-Apr;10(2):227–238. doi: 10.1177/0148607186010002227. [DOI] [PubMed] [Google Scholar]
- Beaumier L., Castillo L., Ajami A. M., Young V. R. Urea cycle intermediate kinetics and nitrate excretion at normal and "therapeutic" intakes of arginine in humans. Am J Physiol. 1995 Nov;269(5 Pt 1):E884–E896. doi: 10.1152/ajpendo.1995.269.5.E884. [DOI] [PubMed] [Google Scholar]
- Becker W. K., Shippee R. L., McManus A. T., Mason A. D., Jr, Pruitt B. A., Jr Kinetics of nitrogen oxide production following experimental thermal injury in rats. J Trauma. 1993 Jun;34(6):855–862. doi: 10.1097/00005373-199306000-00017. [DOI] [PubMed] [Google Scholar]
- Castillo L., Ajami A., Branch S., Chapman T. E., Yu Y. M., Burke J. F., Young V. R. Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism. 1994 Jan;43(1):114–122. doi: 10.1016/0026-0495(94)90166-x. [DOI] [PubMed] [Google Scholar]
- Castillo L., Chapman T. E., Sanchez M., Yu Y. M., Burke J. F., Ajami A. M., Vogt J., Young V. R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7749–7753. doi: 10.1073/pnas.90.16.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo L., DeRojas-Walker T., Yu Y. M., Sanchez M., Chapman T. E., Shannon D., Tannenbaum S., Burke J. F., Young V. R. Whole body arginine metabolism and nitric oxide synthesis in newborns with persistent pulmonary hypertension. Pediatr Res. 1995 Jul;38(1):17–24. doi: 10.1203/00006450-199507000-00004. [DOI] [PubMed] [Google Scholar]
- Castillo L., Sánchez M., Chapman T. E., Ajami A., Burke J. F., Young V. R. The plasma flux and oxidation rate of ornithine adaptively decline with restricted arginine intake. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6393–6397. doi: 10.1073/pnas.91.14.6393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo L., Sánchez M., Vogt J., Chapman T. E., DeRojas-Walker T. C., Tannenbaum S. R., Ajami A. M., Young V. R. Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis. Am J Physiol. 1995 Feb;268(2 Pt 1):E360–E367. doi: 10.1152/ajpendo.1995.268.2.E360. [DOI] [PubMed] [Google Scholar]
- Castillo L., deRojas T. C., Chapman T. E., Vogt J., Burke J. F., Tannenbaum S. R., Young V. R. Splanchnic metabolism of dietary arginine in relation to nitric oxide synthesis in normal adult man. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):193–197. doi: 10.1073/pnas.90.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke J. T., Bier D. M. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C] tyrosine in the postabsorptive state. Metabolism. 1982 Oct;31(10):999–1005. doi: 10.1016/0026-0495(82)90142-1. [DOI] [PubMed] [Google Scholar]
- Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991 Dec 21;338(8782-8783):1546–1550. doi: 10.1016/0140-6736(91)92372-9. [DOI] [PubMed] [Google Scholar]
- Fern E. B., Garlick P. J., McNurlan M. A., Waterlow J. C. The excretion of isotope in urea and ammonia for estimating protein turnover in man with [15N]glycine. Clin Sci (Lond) 1981 Aug;61(2):217–228. doi: 10.1042/cs0610217. [DOI] [PubMed] [Google Scholar]
- Green L. C., Ruiz de Luzuriaga K., Wagner D. A., Rand W., Istfan N., Young V. R., Tannenbaum S. R. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764–7768. doi: 10.1073/pnas.78.12.7764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
- McCartney-Francis N., Allen J. B., Mizel D. E., Albina J. E., Xie Q. W., Nathan C. F., Wahl S. M. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993 Aug 1;178(2):749–754. doi: 10.1084/jem.178.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer J., Traber L. D., Nelson S., Lentz C. W., Nakazawa H., Herndon D. N., Noda H., Traber D. L. Reversal of hyperdynamic response to continuous endotoxin administration by inhibition of NO synthesis. J Appl Physiol (1985) 1992 Jul;73(1):324–328. doi: 10.1152/jappl.1992.73.1.324. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Morikawa E., Moskowitz M. A., Huang Z., Yoshida T., Irikura K., Dalkara T. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke. 1994 Feb;25(2):429–435. doi: 10.1161/01.str.25.2.429. [DOI] [PubMed] [Google Scholar]
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
- Petros A., Bennett D., Vallance P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 1991 Dec 21;338(8782-8783):1557–1558. doi: 10.1016/0140-6736(91)92376-d. [DOI] [PubMed] [Google Scholar]
- Rosenblatt J., Chinkes D., Wolfe M., Wolfe R. R. Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects. Am J Physiol. 1992 Sep;263(3 Pt 1):E584–E596. doi: 10.1152/ajpendo.1992.263.3.E584. [DOI] [PubMed] [Google Scholar]
- Visek W. J. Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986 Jan;116(1):36–46. doi: 10.1093/jn/116.1.36. [DOI] [PubMed] [Google Scholar]
- Wagner D. A., Schultz D. S., Deen W. M., Young V. R., Tannenbaum S. R. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983 Apr;43(4):1921–1925. [PubMed] [Google Scholar]
- Watson P. E., Watson I. D., Batt R. D. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980 Jan;33(1):27–39. doi: 10.1093/ajcn/33.1.27. [DOI] [PubMed] [Google Scholar]
- el-Khoury A. E., Fukagawa N. K., Sánchez M., Tsay R. H., Gleason R. E., Chapman T. E., Young V. R. Validation of the tracer-balance concept with reference to leucine: 24-h intravenous tracer studies with L-[1-13C]leucine and [15N-15N]urea. Am J Clin Nutr. 1994 May;59(5):1000–1011. doi: 10.1093/ajcn/59.5.1000. [DOI] [PubMed] [Google Scholar]