NG‐Nitro‐L‐arginine Methyl Ester Inhibits Bone Metastasis after Modified Intracardiac Injection of Human Breast Cancer Cells in a Nude Mouse Model (original) (raw)
Abstract
We investigated the effects of NG‐nitro‐L‐arginine‐methyI ester (L‐NAME), a nitric oxide synthase (NOS) inhibitor, on hone metastasis of human breast cancer, MDA‐231 cells. Tumor cells (2 × 105 cells in 0.2 ml of phosphate‐buffered saline; PBS) were injected through the diaphragm into the left ventricle of the heart of laparotomized nude mice (male 5‐week‐old ICR‐nu/nu). L‐NAME (2 mg/ mouse/injection in 0.1 ml of PBS) was given intraperitoneally to mice 6 h and 3 h before and immediately, 3 h, 6 h, 18 h and 21 h after the intraeardlac injection of tumor cells. As a control, 0.1 ml of PBS was injected instead of L‐NAME. The effect of NG‐nitro‐D‐arginine‐methyl ester CD‐NAME; 2 mg/mouse/injection), an inactive analogue of L‐NAME, was also investigated to evaluate the specificity of L‐NAME action. Radiographical examination 31 days after the tumor‐cell injection showed that the incidence and number of osteolytic bone metastases and the number of bones with metastasis in L‐NAME‐treated mice were significantly reduced compared with those in PBS‐treated mice (P<0,05). The differences between PBS‐treated and D‐NAME‐treated mice were not significant. Our findings suggest that specific and appropriate NOS inhibitors may represent a new pharmacological approach to therapy for cancer patients at risk of developing osteolytic bone metastases.
Keywords: Nitric oxide (NO), NG‐Nitro‐L‐arginine methyl ester (L‐NAME), Bone metastasis, Human breast cancer, Nude‐mouse model
Full Text
The Full Text of this article is available as a PDF (613.1 KB).
REFERENCES
- 1.) Orr , F. W. , Sanchez‐Sweatman , O. H. , Kostenuik , P. and Singh , G.Tumor‐bone interactions in skeletal metastasis . Clin. Orthop. , 312 , 19 – 23 ( 1995. ). [PubMed] [Google Scholar]
- 2.) Yoneda , T. , Sasaki , A. and Mundy , G. R.Osteolytic bone metastasis in breast cancer . Breast Cancer Res. Treat. , 32 , 73 – 84 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 3.) Moncada , S. , Palmer , R. M. J. and Higgs , E. A.Nitric oxide: physiology, pathophysiology and pharmacology . Pharmacol. Rev. , 43 , 109 – 142 ( 1991. ). [PubMed] [Google Scholar]
- 4.) Andrade , S. P. , Hart , I. R. and Piper , P. J.Inhibitors of nitric oxide synthase selectively reduce flow in tumour‐associated neovasculature . Br. J. Pharmacol. , 107 , 1092 – 1095 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.) Jenkins , D. C. , Charles , I. G. , Thomsen , L. L. , Moss , D. W. , Holmes , L. S. , Baylis , S. A. , Rhodes , P. , Westmore , K. , Emson , P. C. and Moncada , S.Roles of nitric oxide in tumor growth . Proc. Natl. Acad. Sci. USA , 92 , 4392 – 4396 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.) Doi , K. , Akaike , T. , Horie , H. , Noguchi , Y. , Fujii , S. , Beppu , T. , Ogawa , M. and Maeda , H.Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth . Cancer , 77 , 1598 – 1604 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 7.) Fukumura , D. , Yuan , F. , Endo , M. and Jain , R. K.Role of nitric oxide in tumor microcirculation . Am. J. Pathol , 150 , 713 – 725 ( 1997. ). [PMC free article] [PubMed] [Google Scholar]
- 8.) Radomski , M. W. , Jenkins , D. C. , Holmes , L. and Moncada , S.Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets . Cancer Res. , 51 , 6073 – 6078 ( 1991. ). [PubMed] [Google Scholar]
- 9.) Dong , Z. , Staroselsky , A. H. , Qi , X. , Xie , K. and Fidler , I.J. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K‐1735 murine melanoma cells . Cancer Res. , 54 , 789 – 793 ( 1994. ). [PubMed] [Google Scholar]
- 10.) Vidal , M. J. , Zocchi , M. R. , Poggi , A. , Pellegatta , F. and Chierchia , S. L.Involvement of nitric oxide in tumor cell adhesion to cytokine‐activated endothelial cells . J. Car-diovasc. Pharmacol. , 20 ( Suppl. 12 ), S155 – S159 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 11.) Arguello , F. , Baggs , R. B. and Frantz , C. N.A murine model of experimental metastasis to bone and bone marrow . Cancer Res. , 48 , 6876 – 6881 ( 1988. ). [PubMed] [Google Scholar]
- 12.) Nakai , M. , Mundy , G. R. , Williams , P. J. , Boyce , B. and Yoneda , T.A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice . Cancer Res. , 52 , 5395 – 5399 ( 1992. ). [PubMed] [Google Scholar]
- 13.) Sasaki , A. , Boyce , B. F. , Story , B. , Wright , K. R. , Chapman , M. , Boyce , R. , Mundy , G. R. and Yoneda , T.Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice . Cancer Res. , 55 , 3551 – 3557 ( 1995. ). [PubMed] [Google Scholar]
- 14.) Iguchi , H. , Tanaka , S. , Ozawa , Y. , Kashiwakuma , T. , Kimura , T. , Hiraga , T. , Ozawa , H. and Kono , A.An experimental model of bone metastasis by human lung cancer cells: the role of parathyroid hormone‐related protein in bone metastasis . Cancer Res. , 56 , 4040 – 4043 ( 1996. ). [PubMed] [Google Scholar]
- 15.) Moore , P. K. , Oluyomi , A. O. , Babbedge , R. C. , Wallace , P. and Hart , S. L.L‐NG‐Nitroarginine methyl ester exhibits antinociceptive activity in the mouse . Br. J. Pharmacol. , 102 , 198 – 202 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.) Shim , S. S.Physiology of blood circulation of bone . J. Bone Jt. Surg. , 50‐A , 812 – 824 ( 1968. ). [DOI] [PubMed] [Google Scholar]
- 17.) Kjønniksen , I. , Nesland , J. M. , Pihl , A. and Fodstad , ø.Nude rat model for studying metastasis of human tumor cells to bone and bone marrow . J. Natl. Cancer Inst. , 82 , 408 – 412 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 18.) de Bruyn , P. P. H. and Michelson , S.An anionic material at the advancing front of blood cells entering the bone marrow circulation . Blood , 57 , 152 – 156 ( 1981. ). [PubMed] [Google Scholar]
- 19.) Maclntyre , I. , Zaidi , M. , Alam , A. S. M. T. , Datta , H. K. , Moonga , B. S. , Lidbury , P. S. , Hecker , M. and Vane , J. R.Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP , Proc. Natl. Acad. Sci. USA , 88 , 2936 – 2940 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.) Nicolson , G. L.Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites . Biochim. Biophys. Acta , 948 , 175 – 224 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 21.) Greenblatt , E. P. , Loeb , A. L. and Longnecker , D. E.Marked regional heterogeneity in the magnitude of EDRF/NO‐mediated vascular tone in awake rats . J. Cardiovasc. Pharmacol , 21 , 235 – 240 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 22.) Squadrito , F. , Calapai , G. , Cucinotta , D. , Altavilla , D. , Zingarelli , B. , Loculano , M. , Urna , G. , Sardella , A. , Campo , G. M. and Caputi , A. P.Anorectic activity of NG‐nitro‐L‐arginine, an inhibitor of brain nitric oxide syn‐thase, in obese Zucker rats . Eur. J. Pharmacol , 230 , 125 – 128 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 23.) Gardiner , S. M. , Compton , A. M. , Bennett , T. , Palmer , R. M. J. and Moncada , S.Control of regional blood flow by endothelium‐derived nitric oxide . Hypertension , 15 , 486 – 492 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 24.) Yamamoto , T. , Terada , N. , Nishizawa , Y. , Tanaka , H. , Akedo , H. , Seiyama , A. , Shiga , T. and Kosaka , H.Effects of NG‐nitro‐L‐arginine and/or L‐arginine on experimental pulmonary metastasis in mice . Cancer Lett. , 87 , 115 – 120 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 25.) Hortobagyi , G. N. , Theriault , R. L. , Porter , L. , Blayney , D. , Lipton , A. , Sinoff , C. , Wheeler , H. , Simeone , J. R , Seaman , J. , Knight , R. D. , Heffernan , M. and Reitsma , D. J.Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases . N. Engl. J, Med. , 335 , 1785 – 1791 ( 1996. ). [DOI] [PubMed] [Google Scholar]