Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands - PubMed (original) (raw)
. 1999 Mar 23;38(12):3519-29.
doi: 10.1021/bi982680c.
Affiliations
- PMID: 10090738
- DOI: 10.1021/bi982680c
Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands
S Engst et al. Biochemistry. 1999.
Abstract
Wild-type mercuric ion reductase (CCCC enzyme) possesses four cysteines in each of its Hg(II) binding sites, a redox-active pair and a C-terminal pair. Mutation of the C-terminal cysteines to alanines (CCAA enzyme) leads to a loss of steady-state mercuric ion reductase activity using Hg(SR)2 substrates. However, CCCC and CCAA enzymes exhibit an equally high rate of binding and turnover using HgBr2 as substrate under pre-steady-state conditions [Engst and Miller (1998) Biochemistry 37, 11496-11507.]. Since the ligands in these HgX2 substrates differ both in size and in affinity for Hg(II), one or both of these properties may contribute to their different reactivities with CCAA enzyme. To further explore the importance of these two properties, we have examined the pre-steady-state reactions of CCCC and CCAA with Hg(CN)2, which has small, high-affinity ligands, and with Hg(Cys)2, which has bulky, high-affinity ligands. The results indicate that HgX2 substrates with small ligands can rapidly access the redox-active cysteines in the absence of the C-terminal cysteines, but those with large ligands require the C-terminal cysteines for rapid access. In addition, it is concluded that the C-terminal cysteines play a critical role in removing the high-affinity ligands before Hg(II) reaches the redox-active cysteines in the inner active site, since direct access of HgX2 substrates with high-affinity ligands leads to formation of an inhibited complex. Consistent with the results, both a narrow channel leading directly to the redox-active cysteines and a wider channel leading to the redox-active cysteines via initial contact with the C-terminal cysteines can be identified in the structure of the enzyme from Bacillus sp. RC607.
Similar articles
- Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate.
Engst S, Miller SM. Engst S, et al. Biochemistry. 1998 Aug 18;37(33):11496-507. doi: 10.1021/bi9808161. Biochemistry. 1998. PMID: 9708985 - A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
Benison GC, Di Lello P, Shokes JE, Cosper NJ, Scott RA, Legault P, Omichinski JG. Benison GC, et al. Biochemistry. 2004 Jul 6;43(26):8333-45. doi: 10.1021/bi049662h. Biochemistry. 2004. PMID: 15222746 - C-terminal cysteines of Tn501 mercuric ion reductase.
Moore MJ, Miller SM, Walsh CT. Moore MJ, et al. Biochemistry. 1992 Feb 18;31(6):1677-85. doi: 10.1021/bi00121a015. Biochemistry. 1992. PMID: 1531297 - Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
Ladenstein R, Ren B. Ladenstein R, et al. FEBS J. 2006 Sep;273(18):4170-85. doi: 10.1111/j.1742-4658.2006.05421.x. Epub 2006 Aug 23. FEBS J. 2006. PMID: 16930136 Review. - Flavoprotein disulfide reductases: advances in chemistry and function.
Argyrou A, Blanchard JS. Argyrou A, et al. Prog Nucleic Acid Res Mol Biol. 2004;78:89-142. doi: 10.1016/S0079-6603(04)78003-4. Prog Nucleic Acid Res Mol Biol. 2004. PMID: 15210329 Review.
Cited by
- Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.
Petrus AK, Rutner C, Liu S, Wang Y, Wiatrowski HA. Petrus AK, et al. Appl Environ Microbiol. 2015 Nov;81(22):7833-8. doi: 10.1128/AEM.01982-15. Epub 2015 Sep 4. Appl Environ Microbiol. 2015. PMID: 26341208 Free PMC article. - A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.
Silver S, Phung le T. Silver S, et al. J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):587-605. doi: 10.1007/s10295-005-0019-6. Epub 2005 Oct 12. J Ind Microbiol Biotechnol. 2005. PMID: 16133099 Review. - Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.
Sun QA, Kirnarsky L, Sherman S, Gladyshev VN. Sun QA, et al. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8. doi: 10.1073/pnas.051454398. Epub 2001 Mar 20. Proc Natl Acad Sci U S A. 2001. PMID: 11259642 Free PMC article. - Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase.
Hong L, Sharp MA, Poblete S, Biehl R, Zamponi M, Szekely N, Appavou MS, Winkler RG, Nauss RE, Johs A, Parks JM, Yi Z, Cheng X, Liang L, Ohl M, Miller SM, Richter D, Gompper G, Smith JC. Hong L, et al. Biophys J. 2014 Jul 15;107(2):393-400. doi: 10.1016/j.bpj.2014.06.013. Biophys J. 2014. PMID: 25028881 Free PMC article. - Mercury adaptation among bacteria from a deep-sea hydrothermal vent.
Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T. Vetriani C, et al. Appl Environ Microbiol. 2005 Jan;71(1):220-6. doi: 10.1128/AEM.71.1.220-226.2005. Appl Environ Microbiol. 2005. PMID: 15640191 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials