Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function - PubMed (original) (raw)
Review
Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function
H Kasai. Trends Neurosci. 1999 Feb.
Erratum in
- Trends Neurosci 2000 Jan;23(1):43
Abstract
The application of caged-Ca2+ compounds to the study of Ca2+-dependent exocytosis has begun to reveal kinetic intermediates in this important process. The time course of exocytosis varies greatly among different cell and vesicle types, even in response to Ca2+ 'jumps' of identical amplitude. The kinetics of the binding of Ca2+ to the putative Ca2+ sensor for exocytosis also vary. Theoretical analysis reveals that the kinetic diversity of exocytotic and Ca2+-binding reactions has distinct roles in determining the probability of exocytosis occurring. It is proposed that both of these reactions are optimized for the secretory function of specific cell types and that the exocytotic reaction includes vesicle translocation in addition to the fusion of vesicles with the plasma membrane.
Similar articles
- Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles.
Sørensen JB. Sørensen JB. Pflugers Arch. 2004 Jul;448(4):347-62. doi: 10.1007/s00424-004-1247-8. Epub 2004 Mar 2. Pflugers Arch. 2004. PMID: 14997396 Review. - Multiple kinetic components and the Ca2+ requirements of exocytosis.
Kasai H, Takahashi N. Kasai H, et al. Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):331-5. doi: 10.1098/rstb.1999.0384. Philos Trans R Soc Lond B Biol Sci. 1999. PMID: 10212481 Free PMC article. Review. - Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound.
Ninomiya Y, Kishimoto T, Miyashita Y, Kasai H. Ninomiya Y, et al. J Biol Chem. 1996 Jul 26;271(30):17751-4. doi: 10.1074/jbc.271.30.17751. J Biol Chem. 1996. PMID: 8663485 - Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
Giovannucci DR, Stuenkel EL. Giovannucci DR, et al. J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):735-51. doi: 10.1113/jphysiol.1997.sp021898. J Physiol. 1997. PMID: 9051585 Free PMC article. - Examining synaptotagmin 1 function in dense core vesicle exocytosis under direct control of Ca2+.
Sørensen JB, Fernández-Chacón R, Südhof TC, Neher E. Sørensen JB, et al. J Gen Physiol. 2003 Sep;122(3):265-76. doi: 10.1085/jgp.200308855. J Gen Physiol. 2003. PMID: 12939392 Free PMC article.
Cited by
- Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles.
Sørensen JB. Sørensen JB. Pflugers Arch. 2004 Jul;448(4):347-62. doi: 10.1007/s00424-004-1247-8. Epub 2004 Mar 2. Pflugers Arch. 2004. PMID: 14997396 Review. - Insulin granule dynamics in pancreatic beta cells.
Rorsman P, Renström E. Rorsman P, et al. Diabetologia. 2003 Aug;46(8):1029-45. doi: 10.1007/s00125-003-1153-1. Epub 2003 Jul 17. Diabetologia. 2003. PMID: 12879249 Review. - Rapid regulated dense-core vesicle exocytosis requires the CAPS protein.
Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R. Rupnik M, et al. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5627-32. doi: 10.1073/pnas.090359097. Proc Natl Acad Sci U S A. 2000. PMID: 10792045 Free PMC article. - Multiple pathways and independent functional pools in insulin granule exocytosis.
Izumi T. Izumi T. Genes Cells. 2023 Jul;28(7):471-481. doi: 10.1111/gtc.13029. Epub 2023 Apr 18. Genes Cells. 2023. PMID: 37070774 Free PMC article. Review. - Analysis of neurotransmitter release mechanisms by photolysis of caged Ca²⁺ in an autaptic neuron culture system.
Burgalossi A, Jung S, Man KN, Nair R, Jockusch WJ, Wojcik SM, Brose N, Rhee JS. Burgalossi A, et al. Nat Protoc. 2012 Jun 21;7(7):1351-65. doi: 10.1038/nprot.2012.074. Nat Protoc. 2012. PMID: 22722370
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous