Mechanisms of hair cell tuning - PubMed (original) (raw)
Review
Mechanisms of hair cell tuning
R Fettiplace et al. Annu Rev Physiol. 1999.
Abstract
Mechanosensory hair cells of the vertebrate inner ear contribute to acoustic tuning through feedback processes involving voltage-gated channels in the basolateral membrane and mechanotransduction channels in the apical hair bundle. The specific number and kinetics of calcium-activated (BK) potassium channels determine the resonant frequency of electrically tuned hair cells. Kinetic variation among BK channels may arise through alternative splicing of slo gene mRNA and combination with modulatory beta subunits. The number of transduction channels and their rate of adaptation rise with hair cell response frequency along the cochlea's tonotopic axis. Calcium-dependent feedback onto transduction channels may underlie active hair bundle mechanics. The relative contributions of electrical and mechanical feedback to active tuning of hair cells may vary as a function of sound frequency.
Similar articles
- beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.
Ramanathan K, Michael TH, Fuchs PA. Ramanathan K, et al. J Neurosci. 2000 Mar 1;20(5):1675-84. doi: 10.1523/JNEUROSCI.20-05-01675.2000. J Neurosci. 2000. PMID: 10684869 Free PMC article. - Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Ramanathan K, Fuchs PA. Ramanathan K, et al. Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5. Biophys J. 2002. PMID: 11751296 Free PMC article. - A molecular mechanism for electrical tuning of cochlear hair cells.
Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. Ramanathan K, et al. Science. 1999 Jan 8;283(5399):215-7. doi: 10.1126/science.283.5399.215. Science. 1999. PMID: 9880252 - BK Channels in the Vertebrate Inner Ear.
Pyott SJ, Duncan RK. Pyott SJ, et al. Int Rev Neurobiol. 2016;128:369-99. doi: 10.1016/bs.irn.2016.03.016. Epub 2016 Apr 20. Int Rev Neurobiol. 2016. PMID: 27238269 Review. - Calcium-activated potassium channels.
Vergara C, Latorre R, Marrion NV, Adelman JP. Vergara C, et al. Curr Opin Neurobiol. 1998 Jun;8(3):321-9. doi: 10.1016/s0959-4388(98)80056-1. Curr Opin Neurobiol. 1998. PMID: 9687354 Review.
Cited by
- Activation of BK and SK channels by efferent synapses on outer hair cells in high-frequency regions of the rodent cochlea.
Rohmann KN, Wersinger E, Braude JP, Pyott SJ, Fuchs PA. Rohmann KN, et al. J Neurosci. 2015 Feb 4;35(5):1821-30. doi: 10.1523/JNEUROSCI.2790-14.2015. J Neurosci. 2015. PMID: 25653344 Free PMC article. - Regulation of STREX exon large conductance, calcium-activated potassium channels by the beta4 accessory subunit.
Petrik D, Brenner R. Petrik D, et al. Neuroscience. 2007 Nov 23;149(4):789-803. doi: 10.1016/j.neuroscience.2007.07.066. Epub 2007 Sep 12. Neuroscience. 2007. PMID: 17945424 Free PMC article. - Spontaneous low-frequency voltage oscillations in frog saccular hair cells.
Catacuzzeno L, Fioretti B, Perin P, Franciolini F. Catacuzzeno L, et al. J Physiol. 2004 Dec 15;561(Pt 3):685-701. doi: 10.1113/jphysiol.2004.072652. Epub 2004 Oct 15. J Physiol. 2004. PMID: 15489251 Free PMC article. - Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia.
Schweizer FE, Savin D, Luu C, Sultemeier DR, Hoffman LF. Schweizer FE, et al. J Comp Neurol. 2009 Nov 10;517(2):134-45. doi: 10.1002/cne.22148. J Comp Neurol. 2009. PMID: 19731297 Free PMC article. - Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?
Peng AW, Ricci AJ. Peng AW, et al. Hear Res. 2011 Mar;273(1-2):109-22. doi: 10.1016/j.heares.2010.03.094. Epub 2010 Apr 27. Hear Res. 2011. PMID: 20430075 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources