Mechanisms of hair cell tuning - PubMed (original) (raw)
Review
Mechanisms of hair cell tuning
R Fettiplace et al. Annu Rev Physiol. 1999.
Abstract
Mechanosensory hair cells of the vertebrate inner ear contribute to acoustic tuning through feedback processes involving voltage-gated channels in the basolateral membrane and mechanotransduction channels in the apical hair bundle. The specific number and kinetics of calcium-activated (BK) potassium channels determine the resonant frequency of electrically tuned hair cells. Kinetic variation among BK channels may arise through alternative splicing of slo gene mRNA and combination with modulatory beta subunits. The number of transduction channels and their rate of adaptation rise with hair cell response frequency along the cochlea's tonotopic axis. Calcium-dependent feedback onto transduction channels may underlie active hair bundle mechanics. The relative contributions of electrical and mechanical feedback to active tuning of hair cells may vary as a function of sound frequency.
Similar articles
- beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.
Ramanathan K, Michael TH, Fuchs PA. Ramanathan K, et al. J Neurosci. 2000 Mar 1;20(5):1675-84. doi: 10.1523/JNEUROSCI.20-05-01675.2000. J Neurosci. 2000. PMID: 10684869 Free PMC article. - Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Ramanathan K, Fuchs PA. Ramanathan K, et al. Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5. Biophys J. 2002. PMID: 11751296 Free PMC article. - A molecular mechanism for electrical tuning of cochlear hair cells.
Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. Ramanathan K, et al. Science. 1999 Jan 8;283(5399):215-7. doi: 10.1126/science.283.5399.215. Science. 1999. PMID: 9880252 - BK Channels in the Vertebrate Inner Ear.
Pyott SJ, Duncan RK. Pyott SJ, et al. Int Rev Neurobiol. 2016;128:369-99. doi: 10.1016/bs.irn.2016.03.016. Epub 2016 Apr 20. Int Rev Neurobiol. 2016. PMID: 27238269 Review. - Calcium-activated potassium channels.
Vergara C, Latorre R, Marrion NV, Adelman JP. Vergara C, et al. Curr Opin Neurobiol. 1998 Jun;8(3):321-9. doi: 10.1016/s0959-4388(98)80056-1. Curr Opin Neurobiol. 1998. PMID: 9687354 Review.
Cited by
- Songbird frequency selectivity and temporal resolution vary with sex and season.
Gall MD, Salameh TS, Lucas JR. Gall MD, et al. Proc Biol Sci. 2013 Jan 22;280(1751):20122296. doi: 10.1098/rspb.2012.2296. Proc Biol Sci. 2013. PMID: 23193125 Free PMC article. - The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery.
Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC. Oliver D, et al. J Neurosci. 2006 Jun 7;26(23):6181-9. doi: 10.1523/JNEUROSCI.1047-06.2006. J Neurosci. 2006. PMID: 16763026 Free PMC article. - The remarkable cochlear amplifier.
Ashmore J, Avan P, Brownell WE, Dallos P, Dierkes K, Fettiplace R, Grosh K, Hackney CM, Hudspeth AJ, Jülicher F, Lindner B, Martin P, Meaud J, Petit C, Santos-Sacchi J, Sacchi JR, Canlon B. Ashmore J, et al. Hear Res. 2010 Jul;266(1-2):1-17. doi: 10.1016/j.heares.2010.05.001. Hear Res. 2010. PMID: 20541061 Free PMC article. - Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization.
Dreyer A, Delgutte B. Dreyer A, et al. J Neurophysiol. 2006 Nov;96(5):2327-41. doi: 10.1152/jn.00326.2006. Epub 2006 Jun 28. J Neurophysiol. 2006. PMID: 16807349 Free PMC article. - Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish.
Suzuki A, Kozloski J, Crawford JD. Suzuki A, et al. J Neurosci. 2002 Jul 15;22(14):6290-301. doi: 10.1523/JNEUROSCI.22-14-06290.2002. J Neurosci. 2002. PMID: 12122088 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources