Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1 - PubMed (original) (raw)
. 1999 Apr 9;274(15):10618-24.
doi: 10.1074/jbc.274.15.10618.
Affiliations
- PMID: 10187858
- DOI: 10.1074/jbc.274.15.10618
Free article
Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1
J M Desterro et al. J Biol Chem. 1999.
Free article
Abstract
The ubiquitin-like protein SUMO-1 is conjugated to a variety of proteins including Ran GTPase-activating protein 1 (RanGAP1), IkappaBalpha, and PML. SUMO-1-modified proteins display altered subcellular targeting and/or stability. We have purified the SUMO-1-activating enzyme from human cells and shown that it contains two subunits of 38 and 72 kDa. Isolation of cDNAs for each subunit indicates that they are homologous to ubiquitin-activating enzymes and to the Saccharomyces cerevisiae enzymes responsible for conjugation of Smt3p and Rub-1p. In vitro, recombinant SAE1/SAE2 (SUMO-1-activating enzyme) was capable of catalyzing the ATP-dependent formation of a thioester linkage between SUMO-1 and SAE2. The addition of the SUMO-1-conjugating enzyme Ubch9 resulted in efficient transfer of the thioester-linked SUMO-1 from SAE2 to Ubch9. In the presence of SAE1/SAE2, Ubch9, and ATP, SUMO-1 was efficiently conjugated to the protein substrate IkappaBalpha. As SAE1/SAE2, Ubch9, SUMO-1, and IkappaBalpha are all homogeneous, recombinant proteins, it appears that SUMO-1 conjugation of IkappaBalpha in vitro does not require the equivalent of an E3 ubiquitin protein ligase activity.
Similar articles
- Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9.
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT. Tatham MH, et al. J Biol Chem. 2001 Sep 21;276(38):35368-74. doi: 10.1074/jbc.M104214200. Epub 2001 Jul 12. J Biol Chem. 2001. PMID: 11451954 - The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme.
Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S. Schwarz SE, et al. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):560-4. doi: 10.1073/pnas.95.2.560. Proc Natl Acad Sci U S A. 1998. PMID: 9435231 Free PMC article. - In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2.
Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H. Okuma T, et al. Biochem Biophys Res Commun. 1999 Jan 27;254(3):693-8. doi: 10.1006/bbrc.1998.9995. Biochem Biophys Res Commun. 1999. PMID: 9920803 - SUMO/sentrin: protein modifiers regulating important cellular functions.
Kretz-Remy C, Tanguay RM. Kretz-Remy C, et al. Biochem Cell Biol. 1999;77(4):299-309. Biochem Cell Biol. 1999. PMID: 10546893 Review. - SUMO conjugation and cardiovascular development.
Wang J. Wang J. Front Biosci (Landmark Ed). 2009 Jan 1;14(4):1219-29. doi: 10.2741/3304. Front Biosci (Landmark Ed). 2009. PMID: 19273126 Review.
Cited by
- SUMOylation at the crossroads of gut health: insights into physiology and pathology.
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. Ma XN, et al. Cell Commun Signal. 2024 Aug 19;22(1):404. doi: 10.1186/s12964-024-01786-5. Cell Commun Signal. 2024. PMID: 39160548 Free PMC article. Review. - Regulation of SUMOylation on RNA metabolism in cancers.
Cao Y, Huang C, Zhao X, Yu J. Cao Y, et al. Front Mol Biosci. 2023 Feb 24;10:1137215. doi: 10.3389/fmolb.2023.1137215. eCollection 2023. Front Mol Biosci. 2023. PMID: 36911524 Free PMC article. Review. - Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
Lois LM, Lima CD. Lois LM, et al. EMBO J. 2005 Feb 9;24(3):439-51. doi: 10.1038/sj.emboj.7600552. Epub 2005 Jan 20. EMBO J. 2005. PMID: 15660128 Free PMC article. - Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways.
Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. Wang J, et al. PLoS One. 2010 Dec 30;5(12):e15805. doi: 10.1371/journal.pone.0015805. PLoS One. 2010. PMID: 21209884 Free PMC article. - Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat (Triticum aestivum L.).
le Roux ML, Kunert KJ, van der Vyver C, Cullis CA, Botha AM. le Roux ML, et al. Front Plant Sci. 2019 Mar 8;10:266. doi: 10.3389/fpls.2019.00266. eCollection 2019. Front Plant Sci. 2019. PMID: 30906307 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous