Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors - PubMed (original) (raw)

Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors

Y Han et al. Circ Res. 1999.

Abstract

Interleukin-6 (IL-6) is a multifunctional cytokine expressed by angiotensin II (Ang II)-stimulated vascular smooth muscle cells (VSMCs) that functions as an autocrine growth factor. In this study, we analyze the mechanism for Ang II-inducible IL-6 expression in quiescent rat VSMCs. Stimulation with the Ang II agonist Sar1 Ang II (100 nmol/L) induced transcriptional expression of IL-6 mRNA transcripts of 1.8 and 2.4 kb. In transient transfection assays of IL-6 promoter/luciferase reporter plasmids, Sar1 Ang II treatment induced IL-6 transcription in a manner completely dependent on the nuclear factor-kappaB (NF-kappaB) motif. Sar1 Ang II induced cytoplasmic-to-nuclear translocation of the NF-kappaB subunits Rel A and NF-kappaB1 with parallel changes in DNA-binding activity in a biphasic manner, which produced an early peak at 15 minutes followed by a nadir 1 to 6 hours later and a later peak at 24 hours. The early phase of NF-kappaB translocation was dependent on weak simultaneous proteolysis of the IkappaBalpha and beta inhibitors, whereas later translocation was associated with enhanced processing of the p105 precursor into the mature 50-kDa NF-kappaB1 form. Pretreatment with a potent inhibitor of IkappaBalpha proteolysis, TPCK, completely blocked Sar1 Ang IIAng II-induced NF-kappaB activation and induction of endogenous IL-6 gene expression, which indicated the essential role of NF-kappaB in mediating IL-6 expression. We conclude that Ang II is a pleiotropic regulator of the NF-kappaB transcription factor family and may be responsible for activating the expression of cytokine gene networks in VSMCs.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources