Molecular biology of adenosine triphosphate-sensitive potassium channels - PubMed (original) (raw)
Review
Molecular biology of adenosine triphosphate-sensitive potassium channels
L Aguilar-Bryan et al. Endocr Rev. 1999 Apr.
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Similar articles
- Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy.
Cartier EA, Conti LR, Vandenberg CA, Shyng SL. Cartier EA, et al. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2882-7. doi: 10.1073/pnas.051499698. Proc Natl Acad Sci U S A. 2001. PMID: 11226335 Free PMC article. - Familial hyperinsulinism and pancreatic beta-cell ATP-sensitive potassium channels.
Sharma N, Crane A, Gonzalez G, Bryan J, Aguilar-Bryan L. Sharma N, et al. Kidney Int. 2000 Mar;57(3):803-8. doi: 10.1046/j.1523-1755.2000.00918.x. Kidney Int. 2000. PMID: 10720932 Review. - Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.
Seino S, Iwanaga T, Nagashima K, Miki T. Seino S, et al. Diabetes. 2000 Mar;49(3):311-8. doi: 10.2337/diabetes.49.3.311. Diabetes. 2000. PMID: 10868950 Review. - MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit.
Gribble FM, Tucker SJ, Haug T, Ashcroft FM. Gribble FM, et al. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7185-90. doi: 10.1073/pnas.95.12.7185. Proc Natl Acad Sci U S A. 1998. PMID: 9618560 Free PMC article. - A view of sur/KIR6.X, KATP channels.
Babenko AP, Aguilar-Bryan L, Bryan J. Babenko AP, et al. Annu Rev Physiol. 1998;60:667-87. doi: 10.1146/annurev.physiol.60.1.667. Annu Rev Physiol. 1998. PMID: 9558481 Review.
Cited by
- Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism.
Devaraneni PK, Martin GM, Olson EM, Zhou Q, Shyng SL. Devaraneni PK, et al. J Biol Chem. 2015 Mar 20;290(12):7980-91. doi: 10.1074/jbc.M114.634576. Epub 2015 Jan 30. J Biol Chem. 2015. PMID: 25637631 Free PMC article. - Electro-metabolic signaling.
Longden TA, Lederer WJ. Longden TA, et al. J Gen Physiol. 2024 Feb 5;156(2):e202313451. doi: 10.1085/jgp.202313451. Epub 2024 Jan 10. J Gen Physiol. 2024. PMID: 38197953 Free PMC article. - Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System.
Spekker E, Nagy-Grócz G, Vécsei L. Spekker E, et al. Int J Mol Sci. 2023 Nov 21;24(23):16574. doi: 10.3390/ijms242316574. Int J Mol Sci. 2023. PMID: 38068897 Free PMC article. Review. - Interactions between genetic background, insulin resistance and β-cell function.
Kahn SE, Suvag S, Wright LA, Utzschneider KM. Kahn SE, et al. Diabetes Obes Metab. 2012 Oct;14 Suppl 3(0 3):46-56. doi: 10.1111/j.1463-1326.2012.01650.x. Diabetes Obes Metab. 2012. PMID: 22928564 Free PMC article. Review. - Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits.
Lin YW, Akrouh A, Hsu Y, Hughes N, Nichols CG, De León DD. Lin YW, et al. Channels (Austin). 2012 Mar-Apr;6(2):133-8. doi: 10.4161/chan.19980. Epub 2012 Mar 1. Channels (Austin). 2012. PMID: 22562119 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous